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Abstract

The need to incorporate fire loads into reinforced concrete structural design has long been
recognized, and the traditional design method for structural fire resistance has been widely
practiced by engineers mainly because of its simplicity. To simulate the structure’s
response to thermal loads, this research develops and implements a 2D nonlinear finite

element transient analysis for reinforced concrete structures subjected to high temperatures.

The proposed computational scheme takes into account time-varying thermal loads, heat-
of-hydration effects, and temperature-dependent material properties. Algorithms for
calculating the closed-form element stiffness for a quadrilateral element with a fully-
populated material stiffness are also developed. Then, the capability of a 2D nonlinear
finite element transient thermal analysis is implemented into program VecTor2©O, a

nonlinear analysis program for 2D reinforced concrete membranes.

The results obtained from four numerical tests indicate that the proposed computational

scheme and the implemented codes are accurate and reliable.
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CHAPTER 1 INTRODUCTION

Chapter 1 Introduction

1.1 Background

Fire is one of the extreme loadings that can act on reinforced concrete structures. The need
to incorporate this extreme loading into structural design has long been recognized, and the
traditional design method for structural fire resistance has been widely practiced by
engineers mainly because of its simplicity. However, the investigation of the World Trade
Centre disaster by the BPAT (Building Performance Assessment Team) indicated that the
fire issues were most crucial [1] in the collapse of the twin towers. Other than that,
reinforced concrete structures are commonly exposed to thermal loads as the result of the
design function of the structure, ambient conditions, heat of hydration, or exposure to fire
[2]. Therefore, the research on the advanced analysis and design of reinforced concrete

structures subject to thermal loads has attracted much attention recently.

To simulate the structure’s response to various thermal loads, numerical techniques are
normally required because the experimentation is usually too involved and expensive and
the governing Partially Differential Equations (PDEs) are too complex for analytical
solutions to be obtained. The numerical technique which has achieved the greatest degree

of popularity and success is the finite element method.
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1.2 Aims and Objectives

To understand the response of structures to thermal loads, one will have to consider some
consequent analysis stages. First of all, the thermal actions originate from increases in
temperature and can be time-varying. They have to be differentiated from mechanical
loads. Next, the temperature distribution has to be calculated according to the subjected
thermal actions. Again, one will have to consider the time effect in the transient heat
analysis. Once the temperature distribution along the structure is known, one can evaluate
the mechanical behaviour of the heated structure. Notably, some mechanical and thermal
properties of material are highly temperature dependent, and some effects, like spalling and
creep, could be of much importance in the structural analysis. Finally, one can compare the

fire resistance factors or fire safety indices to predict the response.

The main purpose of this research is to develop and implement a 2D nonlinear transient
conduction FE analysis for reinforced concrete structures subjected to high temperature.
Basically, it is a thermal analysis in which the time-varying thermal loads and temperature-
dependent thermal properties are taken into account. Some subroutines will be developed
and then further embedded into the existing main-program VecTor2, a nonlinear analysis
program for 2D reinforced concrete plates. Taking advantage of VecTor2’s built-in
realistic constitutive models, mainly based on the Modified Compression Field Theory [3]
and Distributed Stress Field Model [4], one can obtain the complete response of all
members within the structure, including external restraint forces, internal stresses, cracking
development, deflections etc. Although currently not included, models to reflect the effects
of spalling and thermal creep might be incorporated into the existing procedure without

many difficulties.
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1.3 Scope and Organization

The focus of this research is in the following areas:

A systematic investigation will be carried out to explore the potential of thermal
analysis of concrete structures, including the studies on fundamental theories of the

thermal conduction analysis.

A reliable finite element computational scheme will be developed, which involves

temperature-dependent thermal properties and time-varying thermal loads.

Program codes will be developed and modified, including V2ZHEAT (for transient heat
flow analysis), V2TRED (for material property temperature-dependence), and V2STIF (for

stiffness matrix calculation).

Some corroboration problems will be tested.

This thesis is presented in six chapters as illustrated in Fig. 1.1 below.

Chapter 1 Introduction

}

\l

Chapter 2 Literature Review on Various Aspects
of 2D Nonlinear Conduction Analysis

|

Chapter 3 Computational Scheme

Chapter 4 Code Implementation and Embedment into VecTor2

Chapter 5 Numerical Corroboration

|

Chapter 6 Conclusions and Future Research Prospects

Figure 1.1 Structure of the Thesis
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Chapter 2 Literature Review

Heat transfer is concerned with the physical processes underlying the transport of thermal
energy due to a temperature difference or gradient. Conservation principles of mass,
momentum, and energy always lead to differential equations (in a more general sense,
integral equations). Because of those complex mathematical equations, numerical methods

are usually preferred, instead of solving problems analytically.

Of the several means by which heat is transferred, conduction is probably the most widely
understood and the most familiar. In the following sections, some characteristics of the
numerical heat conduction analysis will be described and reviewed, namely, (i) general
background on heat conduction analysis; (ii) underlying FE spatial approximation; (iii)
underlying FD temporal descretization; (iv) temperature-dependent material properties;

and (v) heat of hydration.

2.1 General Background on Heat Conduction Analysis

In the field of continuum mechanics, motions of a continuum can be described by either
the Lagrangian approach (also called material description) or Eulerian technique (also
known as spatial description). In the former description, individual particles (identified by
material coordinates) are tracked with the passage of time. Alternatively, one can observe
the changes in time at fixed positions in the space (identified by spatial coordinates), which
is the Eulerian description. While the Lagrangian description is often used in solid

mechanics, the Eulerian description dominates [5] in the field of fluid mechanics including
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heat transfer. Consequently, the governing equations presented here will be based on the
Eulerian description in which the current (heat) flow field is fixed at the reference

coordinates rather than tracing the particles downstream.

2.1.1 Classification of Partial Differential Equations (PDEs)

The general form of the two-dimensional second-order PDEs can be expressed as:

2 2 2
AT g T e I I praG =0 2.1)
T ™y 1% Tx b[i%

where the coefficients 4, B, C, D, E, and F' can be functions of both independent variables
(coordinates x and y or time ¢) and dependent variables (temperature 7). According to the
physical meaning in the propagation of flow’s disturbance and characteristics, Sneddon [6]

classified Eq. (2.1) into three categories:

1>0 Hyperbolic
B*- 44Ci{=0 Parabolic (2.2)
1<0 Eliptic

2.1.2 Governing Equations of Heat Conduction and Their Nature

Conduction problems are generally divided into two main categories: steady-state and
transient (or unsteady-state) conduction. The former relates to the condition where the
temperatures at all nodes are independent of time while the latter indicates the situation
where energy storage occurs and the temperature distribution varies with time. Those two

categories of problems are usually treated separately.
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Steady-State Conduction:

The governing equation in terms of Cartesian coordinates for an isotropic material in

steady-state problems is of the form:

N>((kNT)+0 =0 (2.3)

where, Q is volumetric heat resource and & is the material conductivity.

Two well-known equations of elliptic type (c.f. Eq. (2.2)) are:

2 2

Laplace equation: l ]; + l ]; =0 (2.4)
o
2 2

Poisson equation: 1 7; + 1 7; +G=0 (2.5)
v

Both equations above apply to the temperature distribution for constant-property

conduction while Eq. (2.5) reflects distributed heat source present in the problem domains.

Transient Conduction:

The governing equation for transient problems is given by:

NXkNT)+Q - rc%=0 (2.6)

where the time 7 is involved as an independent variable. r and c are the material’s density

and specific heat respectively.

Under the assumption of constant thermal properties, Eq. (2.6) leads to:
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T 2 2
%:m%ﬂw_‘j)m 2.7)

where a is so-called material diffusivity.

By comparing Eq. (2.7) and the generalized form in Eq. (2.2), one can see that the transient
two-dimensional conduction problem possesses a parabolic nature with respect to its time

dependence and an elliptic behaviour with respect to the spatial coordinates.

2.1.3 Initial and Boundary Conditions of Heat Conduction

Correct application of boundary conditions is essential to the convergence and accuracy of
numerical solutions. Generally, the number of boundary conditions required is determined
by the order of the highest derivatives appearing in each independent variable in the
governing PDEs. For example, a transient process governed by a first derivative in time
(e.g. Eq. (2.6)) will require one initial condition in order to carry out the time integration.
Also, two spatial boundary conditions are needed for each coordinate in which a second

derivative appears.

The initial temperature field can be specified as:
T(x,y,t =0)=T,(x,y) inW (2.8)

Spatial boundary conditions are normally of the following types:

Dirichlet (or essential) boundary conditions: 7 =T (x,y) on G, (2.9)
.. 7 __
Neumann (or natural) boundary conditions: - k'ﬂ_ =q, onG (2.10)
n
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Cauchy (or mixed) boundary conditions: a(x, y)T + b(x, y)jT—T = f(x,y) (2.11)
n
where, :TT—T =i xNT) = n, ﬂT—T +n, % with unit vector 7 normal to the boundary C and
n X

its direction-cosine components expressed by n,_ and n, . T and g are the prescribed

values of temperature and heat flux on the corresponding boundaries G. and G, .

2.2 Underlying Finite Element Spatial Approximation

A finite element (FE) method is a mathematical procedure for satisfying a partial
differential equation in an average sense over a finite element. Various methods exist but
all of them require that an integral representation of the PDE be constructed. The FE
method is attractive because of its integral formulation and the use of unstructured grids,
which are preferred [7] for flows. In the following sections, the construction of such

integral formulations and commonly used 2D finite elements will be briefly described.

2.2.1 Integral Representations

The differential and integral forms of the governing equations provide alternate starting
points for a numerical solution. The differential equations apply locally in an appropriate
time-space continuum while global forms may be obtained by integrating the differential
equations over a suitable region of time and space. Within the FE methods, it is necessary
to transform the governing equation from its differential form into an equivalent integral
one. This can be accomplished in two different ways: by classical variational principle or

by the more general weighted-Galerkin residual method.
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Consider the governing equations for an isotropic material in transient problems:

AT =NXiNT)+ Q- rc?”—fzo inW (2.12.2)

with the boundary conditions defined as:

B(T)=T-T =0 onG (2.12.b)
or Ikﬂ—T+q=0 onG (2.12.¢)
fIn !

After dividing the continuum into a finite number of elements, the behavior of which is
specified by a finite number of nodal parameters a, the FE method approximates the

solution in the form as:

T»T"=3 N,a, =Na (2.13)
where N are shape functions prescribed in terms of independent variables (such as the
coordinates) and usually defined locally for elements.

Because of the virtual work principle and the property of definite integral requiring that the

total be the sum of the parts, that is,

g)dW=a g )aw (2.14.a)
w wW

and

)dG=4 ¢f)dG, (2.14.b)
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It can be shown that the properties of such discrete systems would be recovered if the local

approximation in Eq. (2.13) can be cast in an overall integral form:

QAUT AW+ BI"YdG=§ QUT")aW + 3 P(T")dG (2.15)
w G e w ¢ G

When developing the weighted-Galerkin residual formulation given above, one important
theorem known as Gauss’s theorem is often used:

N v = (yi ¥ds (2.16)
For example, in integrating Eq. (2.7) over a non-deforming two-dimensional region, by

using the above Gauss’s theorem one can have (note that exchangeable consequence

between differential and integral operations):

léwaza(\)ﬂ_TdGJ, W 2.17)
Tt e m w

where the a is taken as constant. Physically, the left side of this expression represents the
increase rate of the area integral of 7, while the terms on the right side denote, respectively,
the net increase of 7 by diffusion and volumetric sources. Eq. (2.17) may be integrated in

time, and then the need for appropriate initial and boundary data (conditions) is apparent.

Thus, FE methods can be viewed as satisfying a differential equation in some average
sense over a region of space, and thus as providing regional integral approximation to the
original differential equations. Finite Difference (FD) methods, on the other hand, are
usually regarded as local point-wise approximation methods based on differential

equations.

10
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2.2.2 Commonly Used 2D Finite Elements and Their Shape Functions

In two dimensions, the region is usually discretized by discrete triangular, rectangular or
even more general quadrilateral elements. Since the choice of a particular coordinate
system influences the amount of algebra required in the formulation, it needs to be chosen

wisely [8]. Consider the following:

Mesh information in this analysis (sub-program) is directly obtained from the
remaining main-program VecTor2. As a result, nodal coordinates, element connections as
well as their numberings are inherited from the existing code;

The construction of shape functions that satisfy consistency requirements for linear
elements with straight-lined boundaries becomes straightforward. As a result, the concept
of isoparametric elements is circumvented,

Integrals that appear in the expressions of the element coefficient matrices and
consistent nodal force vector can be carried out in closed form. As a result, numerical
quadrature is avoided in the computational scheme.

Given these facts, the standard rectangular Cartesian coordinates are chosen for both the
employed bilinear quadrilateral and linear triangular elements when constructing the
element shape functions as below. Since no transformations between the coordinate
systems are involved, the element matrices can be derived in such a way that is quite

different [9] from that commonly reported for isoparametric elements.

Despite being included in the more general case of four-node quadrilateral element, the
formulation for the rectangular element will be reported separately since they are

advantageous in situations where it can be used.

11
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2.2.2.1 Linear Triangular Element

For the typical linear triangular element shown in Fig. 2.1, it is common practice to resort
to an area coordinate system [9] when formulating the shape function since the shape

functions are simply the area coordinates themselves. That is,

A . . .
N, =X, = 7’ (with counter-clockwise arrangement, i.e. i = 1,2,3) (2.18)

1 -
(x5 ) (x3,7,)

Figure 2.1 An schematic triangular element

Note that the area coordinates (X,,i =1,2,3) are not independent because their sum is equal

unity. Substituting the area coordinate into Eq. (2.18), one can easily derive the shape

functions in Cartesian coordinates as follows:

lx vy
det]l x; y,

lx, v,
lx, v
detl x, y,

NI

N.(x,y) = (2.19)

lx, v,

12
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2.2.2.2 Rectangular Element

To construct shape functions as well as element coefficient matrices for a rectangular
element as shown in Fig. 2.2, one might be tempted to use a polynomial expansion in terms
of the standard Cartesian coordinates. A Lagrange polynomial is frequently chosen since
the desired interpolation functions can be constructed simply from a tensor product of the

one-dimensional counterparts for the x and y directions respectively.

th.y

1 2

2a

d Ll
| >

Figure 2.2 A rectangular element in Cartesian coordinates

Consider the linear variation of the nodal displacement vector u in two dimensions:

u =Nu, (i=1,2,3,4) (2.20)
with
N, =L{’LY, N, =LY, N, =1L, N, = {"L}” (2.21)
where,

) — 1 (x) — 1 ) = 1 () — 1
L7 =—-(1-x), L7” ==(1+x), L;” =—(1-h), L}” =—(+h) (2.22)

2 2 2 2

and

13
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X=xla,h=y/b (2.23)

2.2.2.3 Four-Node Quadrilateral Element

The natural coordinates (also called quadrilateral coordinates) for a quadrilateral element

are X and h, which are illustrated in Fig. 2.3 for a straight-sided quadrilateral.

Figure 2.3 A bilinear quadrilateral element

The shape functions for the above 4-node isoparametric quadrilateral element are:
N,0ch) = (1+xx)(1 +hh) (2.24)

where (X;,h,) are the nodal coordinates in the natural pattern ((x,h)1 [— 1,1]). Note that
these functions in Eq. (2.24) do vary linearly on quadrilateral lines, but are not linear
polynomials due to the extra term Xh , which is not required for the purpose of linear-
complete polynomials. This traditional natural-coordinate-based isoparametric shape
function will only be used when developing the closed-form element matrix formulation, in
which the entries of matrices are eventually derived in terms of nodal rectangular Cartesian

coordinates.
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2.3 Underlying Finite Difference Temporal Discretization

In transient problems, it will be shown that the resultant equation is a set of first-order
ordinary differential equations with respect to the independent variable time ¢.
Consequently, the solutions must proceed with increasing time until the results are
obtained over a required time level or until a particular temperature level (such as the

steady state) is attained.

The simplest and most common procedure for such a transient analysis is to use a two-
level finite difference formulation in time, which interpolates time between two successive

levels n and n+1. That is,

T, -T
% = (2.25)

As it will be shown in Chapter 3, in the case of temperature-dependent properties, one
must decide at what time level to evaluate the temperature terms appearing in the
coefficient matrices in the resultant equations. Similarly, one can use two-point (linear)

interpolation formula as follows:
T, =0-nT, +rT,, (2.26)

By changing the value of » from 0 to 1 in Eq. (2.26), different classical methods in the

literature can be identified as follows:
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7 =0 : the Euler method

The Euler method is a forward finite difference technique. The advancement requires no
iteration due to its explicit nature, but the time step is restricted by stability considerations

and may be further restricted by nonlinear problems.

r =1: the Laasonen method

This is a backward finite difference technique with a fully implicit nature.

r =1/ 2 : the Crank-Nicholson method

The Crank-Nicholson is a center finite difference technique. This is a common choice
based on accuracy considerations [10], with the time discretization being second-order

correct.

r =2/3: the Galerkin method

Instead of the finite difference technique, if one employs a Galerkin-weighted residual
method with linear 1D interpolation function in time dimension, the value of  in Eq. (2.26)
could be proven [11] to be 2/3. While the final formulation looks similar to those from
FD approximations, the Galerkin scheme exhibits considerable computational advantages.
It is unconditionally stable and gives less oscillatory errors than the most accurate Crank-

Nicholson scheme.
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2.4 Temperature-Dependent Material Properties

While concrete is generally a non-homogeneous, anisotropic medium composed of
particles of aggregate held together by hydrated cement paste, it can be treated as a
homogeneous isotropic material in heat analysis. Despite all that, the temperature
dependence of thermal properties has an especially great effect on heat transfer analysis.
Moreover, the temperature-dependence of the mechanical properties will significantly

affect the follow-up stress and deformation analyses.

2.4.1 Thermal Properties

From the general transient governing equation (i.e. Eq. (2.6)), one can see that, in addition

to physical property density r , the two thermal properties involved in the heat analysis are:

Thermal conductivity 4: heat flux transmitted through a unit area of a material under a

unit temperature gradient. This measures the ability of the material to conduct heat.

Specific heat c: quantity of heat needed to raise the temperature of a unit mass of a

material by one degree. This is a measure of the heat capacity of a material.

The temperature-dependent thermal and physical properties make heat analysis nonlinear
since the coefficient matrices in the final resultant equation are not constant but dependent

on the temperature, which in turn is the unknown to be solved.

While simple problems might be tackled by using the Kirchoff transformation technique
[12], most resultant computational schemes will lead to a tremendous number of

computations and consequently are quite inefficient [13]. Furthermore, the use of the
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Kirchoff transformation requires reverting back to the original physical temperature after

solving the equations and this involves the integration of the transformation equations.

Therefore, it is more convenient and simpler to consider the case of variable thermal and
physical properties directly in the construction of relevant governing equation and to solve
the equation in an iterative manner. Whether properties are functions of temperature or in
the form of tiered data companied by interpolation, they give rise to a nonlinear algebraic
equations system and the associated complexity is solving the equations. Fortunately, such
difficulties can be reasonably bypassed by assigning an average value of each property
within each finite element at the current iteration step to simplify the formulation. The
detailed derivation will be described in Chapter 3. Therefore, the only task remaining here
is to establish a database from which one can read the values of those temperature-

dependent properties at different temperature ranges.

Since thermal properties at high temperature are quite difficult to obtain and there are very
few data available in the literature (e.g. reference [14-15]), their variation with temperature
employed in this proposed implementation scheme are based on the Eurocode and are

briefly given below:

1r(20°C) TE£115C
|
=T (20° C)(1 - 0.02(T - 115)/85) 115°C < T £200°C
=1
i1 (20°C)(0.98 - 0.03(T - 200)/200) 200°C <T £ 400°C

Lr (20°C)(0.95- 0.07(T - 400)/800) 400°C <T £1200°C

(2.27)

where r (T') is the density at temperature 7(°C); and
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1900 (J/kgK) T £100°C
|
{900 +(T - 100) (J/kgK) 100°C < T £200°C
oT) = (2.28)
11000+ (T - 200)/2 (J/kgK) 200°C <T £400°C
11100 (J/kgK) 400°C <T £1200°C

where ¢(T) is the specific heat at temperature 7(°C).

Concerning the conductivity £, the initial value at a reference temperature (20°C ) can be

used in the interpolation between the upper and lower limits given by Eurocode:

k" =2.0- 0.2451(T /100) + 0.0107(T /100)* (W /mK) (2.29.a)

k'™ =1.36- 0.136(T /100) +0.0057(T /100)* (W /mK ) (2.29.b)

Also, the experimental data provided by Shin et al. [14], given in Table 2.1, can be used as

a back-up choice in the relative codes.

Temperature Density r Conductivity k£ Diffusivity a Specific heat ¢
(°C) (kgm™) (WIimK) (10°°m*s™) (J/kgK)
20 2252.43 2.194 0.8824 1104
500 2104.97 1.283 0.4505 1354
700 2077.71 1.136 0.4031 1357
900 2057.44 1.027 0.4170 1199
r =0.00018967% - 0.39807 +2259.62
Correlative k =1.3647E - 6T* - 0.0025697 +2.2427
function of T a =(9.1639E - 7T - 0.0013707 +0.9091)" 10°°
c=klar

Table 2.1 Thermal Properties Given by Shin et al. [14]

Variation of these modification factors given above are plotted in Fig. 2.4.
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Thermal Properties
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Figure 2.4 Thermal factors at high temperatures
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2.4.2 Mechanical Properties

Once the transient temperature distribution is obtained, the structural response can be
determined in which the material mechanical properties will dominate. Both strength and
stiffness deteriorate significantly under evaluated temperatures. In addition, continuity
thermal stresses are induced in indeterminate structures due to thermal expansion and are

heavily dependent on structural effective stiffness [16].

The mechanisms governing the chemical reactions and physical changes inside reinforced
concrete, and how they affect the mechanical properties, are complicated. Little
experimental data is available (e.g. reference [17-18]) and, surprisingly, they are quite
different from each other. Therefore, the values for normal-weight concrete and hot-rolled
steel in Eurocode are employed in the calculation of the reduction factors. A short
description of these data, and the corresponding calculated factors in VecTor2, are given

below.

Some characteristics of concrete and reinforcing steel at evaluated temperatures are shown

in Table 2.2. The reduction factors for those properties are directly given with the

exception of the value of € which includes thermal strains.

If the tensile strength of concrete is to be taken into account, in the absence of more
accurate information, the following equation can be used in the calculation of this

reduction factor, according to Eurocode.

1.0 T £100°C
|

F(T)=71.0- 1.0(T - 100)/500 100°C <T £600°C (2.30)
10.0 600°C <T £1200°C
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concrete steel
temperature aSilize(LI:zS carbonate aggregates 20 20 20
AR — , S S| LT | ESTE,
JelFew | € | Sl Se e,
20 1.00 0.0025 1.00 0.0025 1.0 1.0 1.0
100 1.00 0.0040 1.00 0.0040 1.0 1.0 1.0
200 0.95 0.0055 0.97 0.0055 1.0 0.81 0.90
300 0.85 0.0070 091 0.0070 1.0 0.61 0.80
400 0.75 0.0100 0.85 0.0100 1.0 0.42 0.70
500 0.60 0.0150 0.74 0.0150 0.78 0.36 0.60
600 0.45 0.0250 0.60 0.0250 0.47 0.18 0.21
700 0.30 0.0250 0.43 0.0250 0.23 0.07 0.13
800 0.15 0.0250 0.27 0.0250 0.11 0.05 0.09
900 0.08 0.0250 0.15 0.0250 0.06 0.04 0.07
1000 0.04 0.0250 0.06 0.0250 0.04 0.02 0.04
1100 0.01 0.0250 0.02 0.0250 0.02 0.01 0.02
1200 0.00 - 0.00 - 0.00 0.00 0.00

Table 2.2 Some material properties of concrete and reinforcing steel

In the Eurocode, the thermal expansion coefficients have the variation as shown in Fig. 2.5.

Expansion Coeff PC (x 107
457
4ot

e | Wonmal-weight
ok concrete

2af

20¢F
Steel

Taf

1.0F

st Lightweight concrete

0
0 100 200 300 400 oS00 8OO YOO g0 900

Temperatire 2]

Figure 2.5 Thermal coefficients of concrete and steel
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It can be seen that for both concrete and steel, thermal expansion ceases altogether at some
levels of temperature. Instead of giving explicit thermal expansion coefficients, the
Eurocode provides thermal strains within various temperature ranges directly as thermal

elongation is believed to develop progressively.

Concrete with siliceous aggregate:

i-1.87 10 +9° 10°T+23° 10°"'T* T £700°C
e(l) = (2.31.a)
1147107 700°C <T £1200°C

Concrete with carbonate aggregate:

i1-1.2710°+6710°°T+1.4710°"T° T E£805°C
e(l) =i (2.31.b)
11271077 805°C <T £1200°C

Reinforcing steel:

1-2416°10*+1.2°10°T+0.4" 10°T° T £750°C
]

e(T)=il11" 10" 700°C <T £860°C (2.32)
15627107 +2710°T 860°C < T £1200°C

Note that the above thermal strains are relative to the length at 20°C . Thus, with a

reference at 20° C the reduction (increasing in this case) factor could be calculated at:

_a(l) _e()/DT _e()/T - 20)
a(20) e(20), e(20),,

S(T) (2.33)

Variation of these modification factors given above are plotted in Fig. 2.6 and 2.7 for

various concrete and steel, respectively.
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Figure 2.6 Mechanical modification factors for various concrete
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Figure 2.7 Mechanical modification factors for steel

25



CHAPTER 2 LITERATURE REVIEW

2.5 Heat-of-Hydration Model
The hydration of cement within concrete is an exothermic process. Thermal expansion, and
its induced effects such as thermal cracking, may reach a significant level in early age

concrete, particularly in massive structures.

The micro-structural development occurring during the hydration of cement is complicated.
To this date, precise knowledge of the mechanisms and kinetics of the hydration reactions
between cement and water requires further investigation [19]. In addition, various factors,
including curing conditions (temperature and age), type of cement, mix proportion of the
concrete (such as water/cement ratio), as well as environmental interactions, can influence
the rate and the total heat of hydration within concrete structures. Thus, it seems
appropriate to treat the heat generated per unit volume during hydration as a material
property [20]. At the same time, it has become clear that age-dependent material properties
must be uniquely [21] tied to the degree of hydration, in turn relating to maturity value in

the field of the maturity method [22].

Determination of concrete maturity values requires the knowledge of its time-temperature
history. The maturity method is viewed as a successful technique which takes into account
the varying effects of concrete temperature and curing time on concrete strength
development. While the maturity method has been used conventionally to predict concrete
strength gain during curing, its application to concrete technology can go far beyond that
[23]. In this sense, it can be applied to any concrete property related to the extent of cement

hydration since the maturity method is based on cement hydration kinetics.
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In the application of the maturity method, maturity models (or functions) are used to
convert the time-temperature curing history of concrete into maturity values. Based on
accuracy and wider range of temperature conditions, the best known model is the one
proposed by Freiesleben-Hanson and Pedersen [24]. Unlike the early models proposed by
Saul [25] and Rastrup [26], this model is based on the Arrhenius equation, which describes

the effect of temperature on the rate of chemical reactions, and is of the form:

M@,T) = tc‘jcexp(;ei )t (2.34)

where,

R is the universal gas constant being equal to 8.314J /(mol>K) .

T, is the actual temperature of concrete in degree Kelvin.

E_ is conventionally an apparent activation energy in kJ/mol . It is recently reported [21-
25] that £, 1s not a true activation energy but, rather, provides a temperature sensitivity

factor for the property interested. While the CEB-FIP code uses an average value and

ASTM recommends a range, the method accepted by many researchers is of the form:

133.5 T 320°C

E(T) =i (2.35)
133.5+1.47(20-T,) T.<20°C

k is typically a temperature-dependent rate constant for compression strength development,

but in this case, for degree of hydration development. By using a parabolic-dispersion

model (the one proposed by Knudsen [27] is commonly employed) to fit the experimental
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data, the curve representing degree of hydration versus time can be obtained. It is
important to point out that the £ value is also property-dependent while it is classically

related the compression strength development.

Since the rate constant is affected by temperature, an equivalent quantity called the

equivalent time ¢, is introduced and defined as follows:

$ EE @ |1 o
t, = § expa 2.36
<A e T T3 T+273$Dt (236

In this way, time values at which the maturity values, in turn the degree of hydration, have
been measured at other temperature can be converted to equivalent times at the reference
temperature, in hopes of obtaining a single curve for degree of hydration versus equivalent

time.

Now one can establish the model to simulate the relationship between the rate of heat of
hydration and degree of hydration. There are some models developed in the past decade
[28-29]. While numerous efforts have been made to include as many realistic features into
those models as possible, only time will tell if the underlying assumption are indeed
reasonable. The volumetric heat of hydration in the model, which is based on the work by

Wang and Dilger [28] for ordinary Portland cement, is of the form:

i0.5+0.54¢," t, £10.0

Q =
12.2exp[- 0.0286(, - 10.0)] 7, >10.0

(2.37)

where ¢, is the equivalent maturity time of concrete in hours.

28



CHAPTER 2 LITERATURE REVIEW

While it looks like one can proceed with heat analysis once the above Q is determined, the

implementation of heat analysis considering the heat of hydration remains unsolved mainly

due to following three facts:

1.

Some influencing factors, like water/cement ration and cement content, are highly
situation dependent. An accurate model requires a complete data base for which
experimental works will be involved. This project mainly focuses on analytical

computation.

The environmental interactions during heat analysis, technically termed as
boundary conditions in FE analysis, will play an important role. That energy
transferred between the boundary and the environment is mainly due to convection,
thermal irradiation as well as solar radiation. However, only heat conduction is

involved in this work.

As mentioned previously, the material properties of concrete at early ages will be
highly age-dependent. Thus, the absence of thermal properties for heat analysis and
mechanical properties for the follow-up analyses, such as stress and crack

evaluation, makes this temperature calculation (if done) less reliable and useful.

Although no implementation of heat of hydration will be realized in this project, the

formulation provided in the proposed computational scheme (described in Chapter 3) does

include this aspect for the future possible development.
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Chapter 3 Gomputational Scheme

Although the actual derivation is based on a Taylor expansion, Finite Difference (FD)
approximation is based on local, discontinuous shape functions [7] with collocation
weighting applied from the weighted-residual method viewpoint. Its conceptual simplicity
and ease of implementation entail the loss of accuracy. Moreover, its dependency on a
structured grid significantly restricts the application range since one-to-one mapping

between the physical domain and computational domain is the key feature of such a grid.

The reasons for the success of the FE method are well known [30]: local characteristic of
approximation, flexible ability of simulation of complex geometrical domains, and
existence of a large set of approximation schemes adapted to various problems but
embedded in a unified formulation. The FE method requires only an unstructured grid, in
which nodes and grid cells (elements) are quasi-random ordered. That is, unlike the
structured grid, neighbouring cells or nodes cannot be directly identified by their indices.
In addition to its flexibility, the unstructured grid brings in the much easier adaptation of
mesh (mesh refinement or mesh regeneration) to the solution domain. Therefore, the FE

method is chosen in the current computational scheme.

3.1 Governing Equations with Appropriate Boundary
Conditions

Due to the additional dimension introduced by the time variable, the numerical procedures

for transient differential equations are quite different from those for steady-state problems.
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Therefore, they are usually treated separately. For the purpose of description, some

equations in Chapter 2 will be repeated here.

The governing equation in terms of Cartesian coordinates for an isotropic material in

steady-state problems is of the form:
N>((kNT)+0 =0 (2.3)
while the one for transient problems is given by:

NXkNT)+Q - rc%=0 (2.6)

To solve these equations, one has to specify the initial temperature distribution (for
transient problems only) and the boundary conditions which might be time dependent and

spatially varying.

The initial condition determines the state of the temperature field at time # =0 and can be

expressed as:
T(x,y,t =0) =T, (x,y) inW (2.8)

Spatial boundary conditions are normally of the following types:

Dirichlet (or essential) boundary conditions: 7 =T (x,y) on G, (2.9
... 7 __
Neumann (or natural) boundary conditions: - k'ﬂ_ =q, onG (2.10)
n
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. .. T _
Cauchy (or mixed) boundary conditions: a(x, y)T + b(x, y)ﬂ— = f(x,y) (2.11)
n

The Dirichlet boundary conditions can be exactly treated by modifying the coefficient
matrix in the global finite element equations, reflecting the specified value of nodal
solutions. The specification of Neumann boundary is a unique [5] feature in FE method, in
the sense that the Neumann boundary conditions are explicitly available within the FE
formulation (as shown in later section). For elliptic (with respect to spatial discretization
for heat conductions) equations, Cauchy boundary conditions (usually corresponding to
convective conditions) are not appropriate in FE analysis since they prescribe both the

function and its derivative at one spatial location.

3.2 Sequential Steps in the Computational Scheme

This section describes the sequential steps require to derive the final formulation of the
finite element analysis by using a standard Galerkin procedure. Mainly, one multiplies the
governing equation by a weighting function followed by integrating by parts and making
use of Green’s theorem in the plane. After that, one has to approximate the temperature
field with the interpolation (shape) function chosen and specify the weighting function as
the shape function in the integral statement. Once the element coefficient matrices are
assembled, one can further rewrite the equation in a matrix system. Thus, particular
solution procedures can be applied in solving the resultant equation systems corresponding
to the steady-state and transient problems, respectively. A detailed step-by-step

computational scheme is summarized below.
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3.2.1 Element Discretization

In this step, one discretizes the physical domain into elements which are discrete spatial
regions from the subdivision of a continuum. The choice of element, including type,
numbering and allocation, involves a trade-off between convenience and complexity. In
this scheme, standard triangular, rectangular, and the more general 4-node quadrilateral
elements are chosen since the mesh information is directly obtained from the existing code

in program VecTor2.

3.2.2 Integral Statement Establishment

In this step, one will need to write the equivalent integral statement for Eq. (2.6) and Eq.

(2.10) by assuming that the essential boundary condition in Eq. (2.9) is automatically

satisfied by the proper choice of the function 7" in Eq. (2.13).

One can use the Galerkin-weighted residual method to readily get the strong form

statement as:

V(vyg\t NT) +0- rc%gdw+(?7§k Kﬁ‘éﬂ(}:o (3.1)

Here, the introduced function v is the so-called test function.

Then, by using the following divergence theorem:

wN((NT) = NsWkNT) - (Nv) s (ANT) (3.2)

and Gauss’s theorem (i.e. Eq. (2.16)) for the first term in the strong form equation, one can

further obtain:

33



CHAPTER 3 COMPUTATIONAL SCHEME

YANT %idG- fNv) XANT)dW+ ¢yQdW- cc‘yﬂ—Td\N+ (‘y—gz(ﬂ—T + quez 0 (3.3)
G w W w e G a1t

Recognizing G=G. +G,, ¢q, =- ij—T =-(kNT)%i and making v=-v (without loss of
n

n

generality as both functions are arbitrary), one can finally reach the weak form as in Eq.
(3.4) in which a lower order of continuity is required in the choice of the trial function 7 at

the price of a higher continuity for test function v:

NTVANTAO +r cc‘y?”—fdw- (yQdO + (ygdG- @k%dGz 0 (3.4)
w w

w G G
It can be seen that if the choice of T is restricted in satisfying the essential boundary

condition (i.e. Eq. (2.9)) along G,, the last term in the left-hand-side of Eq. (3.4) can be

omitted. Then, Eq. (3.4) can be reduced to:

NVANTAO +r C(‘y%dw- (y0doO + (ygdG=0 (3.5)
W

w w G,

So, one can notice that the natural boundary condition (i.e. Eq. (2.10)) along G, is satisfied

since no variable T appears in the integrals taken along the boundary G, in Eq. (3.5).

Through the above derivations, it can be seen that in the Galerkin procedure, the initial and
boundary conditions (i.e. Eq. (2.8) and (2.9) respectively) do not appear explicitly in the
formulations. Thus, the spatial interpolation functions must be chosen so as to satisfy the
essential boundary conditions, and a temporal stepping scheme must be started from the

initial condition. This does not allow a general formulation. Also, from the original
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governing equations (i.e. Eq. (2.3) and (2.6) for steady-state and transient problem

respectively), since second derivatives appear in the integrand, the consistency requirement
implies that C' continuity elements must be used. This is a stringent requirement in

practice. Therefore, it is desirable to reduce the order of differentiation to employ C°
elements and to introduce the boundary conditions directly. This was realized through Eq.

(3.5), with a trial (shape) function as constructed in the next step.

3.2.3 Shape Function Construction

The purpose of this step is to construct the shape function as described previously in the

form of:

T»T"=§ N,a, =Na (2.13)

where, shape functions N, (x,y) postulate a spatial form for the dependent variable 7 in

the element and are related to the number of nodes in that element as well as their
numbering system. In turn, the function 7 is expanded as a spatially weighted summation
over all the nodal points in Eq. (2.13). Each term in the summation process represents the

contribution from a particular node i and contains terms N, and a, term defined for that

node. This allows evaluation of the spatial integrals in Eq. (3.5).

Since the transient problem involves the time variable (where the space domain W is not

subjected to change), the following partial discretization is adopted in this scheme:

T(x,p,)» T" = § N,(x,y)a,() =Na (3.6)
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Clearly, the derivatives of a with respect to time ¢ will remain in the final approximation,
and one can expect the resultant equation will be a set of ordinary differential equations

with ¢ as the independent variable. Concerning the spatial shape functions N,(x,»),

relevant equations in Section 2.2.2 can be employed for corresponding element types.

3.2.4 Element Matrix Calculation in Closed-Form
This step applies the key component of the Galerkin procedure, which is, substituting the

shape functions as shown into Eq. (3.6) and prescribing the test functions as v=w, = N,.

In doing so, Eq. (3.5) will lead to:

SN N \ TIT \ \ — —
Q"N NTAO +1 N, g -dW- QV,0dO + GV, 7dG=0 (3.7)
w w w G

with T(x,y,t)» T" = é_ N,(x,y)a;(t) =Na being such that the prescribed essential

boundary conditions along G. are satisfied. Then, it can be rewritten in a matrix system of

ordinary differential equations as follows:

Ka+CL2 41 =0 (3.8)
dt

where, in heat analysis, K is the conductance matrix which is symmetric and diagonally
dominant; C is the capacitance matrix; f is the forcing term due to internal heat resources
(e.g. heat of hydration) and natural boundary conditions; and a is the nodal vector
containing the nodal values of dependent variable 7. The entries of matrices can be

evaluated by:
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K, =K, ="~ iNN,dO = dﬂNf W IV I,
w

dO 3.9.
ij ji - M I T ) (3.9.2)

C, =C, = V,r cN ,dW (3.9.b)
w
f, =- V,0dO0 + YV, gdG (3.9.0)
w G

In the case of steady-state problems, instead of Eq. (3.8), standard shape functions in Eq.

(2.13) (with a, simply a set of constants) are used. The final equations thus are always of

an algebraic form as follows:

Ka+f =0 (3.10)

from which a unique set of parameters (nodal solution) can be determined.

From the above derivations, it can be seen that one equation of the form in Eq. (3.8) or Eq.
(3.10) applies to every nodal point. Consequently, there is no need to specially construct

the boundary equations, as often arises with the FD formulations.

It is important to point out that in the above calculation of element coefficient matrices, an
average value of the thermal property (k or ¢) can be assigned to each element based on the
current temperature distribution to simplify the formulation. Similarly, parameters QO and

r are taken as constant, an average value within an element, as well as g over the length

of the boundary of the relevant element.

Note that all the above calculations are evaluated in the local individual elements. One can

(I3

use superscript “e” for elemental coefficient matrices, shape functions, and integral
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domains to differentiate the global counterpart if necessary. The matrices in closed-form
will be derived for all element types employed in this computational scheme. In the
thermal analysis, since there is a single degree of freedom per node and material matrices
are scalars (unlike counterpart matrices in traditional FE formulations), if the number of
nodes in the element is equal to #, both the matrix K and C will be of the form n” n.

Similarly, vector f willbe n” 1.

3.2.4.1 Linear Triangular Element

For the triangle shown in Fig. 2.1, with the shape function described in Section 2.2.2.1, the

following closed-form elemental matrices are calculated as follows:
The conductance matrix K:
&c, +dd, cc,+dd, ccyt+dd; U

K= e gczcl +d,d, c,c,+d,d, c,c +d2d33 (3.11)
%301 +dyd, cye, tdid, cyeyt+did, H

where

¢, =y;-y,andd, =x, - x, (3.12)

with 7, j and m are taken as 1, 2, 3 in a cyclic permutation.

The capacitance matrix C:

e eAe é2 1 1[:]
ce =1 fz 921 (3.13)
g 1 2§
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The forcing term f:

If side ij of the triangle is subjected to the natural boundary condition with a uniform flux g,

u
f€:f5+f;:-QA Uy ”21“ (3.14)
@H Y

3.2.4.2 Bilinear Rectangular Element
For the rectangle shown in Fig. 2.2, with the shape functions in Section 2.2.2.2, the

following closed-form elemental matrices are calculated as follows:

The conductance matrix K:

€2(a2+b ) a’-2b -a*-b> b*-24° U
u
K = k¢ é 2(a*+b*) b*-2a> -a*-b (3.15)
6 bé 2 2 2 _ 2 U )
ab & 2(a”+b") a°-2b i
Eym. 2(a* +b*)f
The capacitance matrix C:
&4 2 1 20
é a
‘cabazr 4 2 1/
ce =" ;abg o (3.16)
é a
gym. 40

The forcing term f:

If edge 1-2 of the rectangle is subjected to the natural boundary condition with a uniform

flux g,
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du du

u ete u

e _ gpe e e A ] qL12§,
fo=fo+f =-Qqp€U+ T 12 €0 3.17
ot T a" S e

eu e u

di i

3.2.4.3 General Four-Node Quadrilateral Element
For the quadrilateral shown in Fig. 2.3, by the algorithm developed below the closed-form

matrices can be directly calculated in terms of the nodal coordinates and thermal properties

only.

The conductance matrix K:

The calculation of K matrix here is reminiscent of the work in reference [34]. To save
computational efforts, one can use symmetry of the matrix and separate the entries into

three groups (B, D and F) as follows:

éKn K12 K13 K14@ é8 D F Du
é ua é f
K=§ Kzz K23 K24l;|:é B D Flj (3_18)
? K33 K34 u é B D u
e u é g
gym. K,fQ e B

All entries in matrix K are of the form:

K G sy | Aty ¥ oty (3.19)
TUO2834)- 7 347- £ ¢

A, is twice the area of the element, which can be calculated as follows:

Az :(xl - xs)(yz - y4)' (y1 - ys)(xz - x4) (3.20)
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and
Ji = x5y - v - (0 +ys)(x, - X)) +2(x,0, - Y,x,) (3.21.a)
So == X))y +v) - (v -y, +x,) +2(x, 5 - y,x3) (3.21.b)

All other coefficients will be formulated only for the parent entry within each group and
remaining entries can then be calculated through a nodal coordinate transformation as

follows:

X P ox,y, P oxsy; Poxyy, Pox,y (3.22)

Here, P indicates ‘overwrite’.

All detailed calculations are described in Table 3.1.
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Group” | Parent S, S, t t, Order’
K
N .. W, - y3)2+(y3' y4)2 h
T, - y4)2 |4 ’ ’ (s - y4)2 -, - y3)2 P K,
B K 2 2! -5 /2 (- ) H(x; - x;) 2 N b
T+(x2-x4) K 2 2 +(‘x3-‘x4) -(‘xz-‘x3) K33
(X - x)" +H(x, - xy)
b K,
Ky,
» | 2= Y)Cyi-ys- ) | - v - ») | - yDQys- vy - 3,) 5= )5 - vy) P K,
1 (X, - x,)2x - x3-x,) |+, - x)(x, - x) | H (x5 - x)2x, - x5 - Xx,) +(x; - x)(x; - x,) P K,
P K,
s+ ) +,)
- 2(y, - )’4)2
F K i ilr(yz - )’4)2 U 0 -2 y5 tyy) O -2 -y, tys-0y) K,
: T+ (x, - x4)21v) +(x; +x,)(x, +x,) - x)x - x, tx-x) | P Ky,
- 2(x, - x4)2
- 2(x,x; +x,x,)
Legend:

1 B : Diagonal (freedom on node itself);

#: grouping is separated based on the freedom characteristics as follows: |l D : freedom at adjacent nodes;

{ F :freedom at opposite nodes.
*: computing sequence when one transforms parent term to remaining entries within each group.

Table 3.1 Calculation of entries in K matrix for four-node quadrilateral element
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The capacitance matrix C:

The calculation of matrix C is based on the developed MATHEMATICA subroutine which
runs symbolic operations mathematically. Also, due to symmetry, only those entries on and

above the main diagonal need to be calculated.

édst Row u
é u
~ 2nd Row p
Ce=r°c® a (3.23)
e 3rd  Row U

g"sym. 4th Rowg
where the formulation of entries in those four rows is given in Table 3.2.

The forcing term f:

If edge 1-2 of the rectangle is subjected to the natural boundary condition with a uniform

flux g,
du du
u u
Aeg, qeL@ g,
fe=f +f°=-Q9°—€us= 12€ U 3.24
h T e o o G2
eu eu
da &a
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1* Row (four entries: C,,,C,,,C,;,C,,):

( 1 (7 32x2y1 . 32x4y1 . P2x1y2  32x3y2  64x4y2 N 32Xx2y3 32x4y3 32X1y4
128

_ N 64 x2y4 . 32x3y4) )
3 3 3 9 9 9 9 3 9 9

(% (-3x2y1l+x3yl+2x4yl +3x1y2-2x3y2 -x4y2-x1y3+2x2y3-x4y3-2x1y4+x2y4+x3y4) )
( 1 (7 16x2y1 . 16x4yl N 16x1y2

16x3y2 N 16x2y3 16x4y3 16x1y4 N 16x3y4

128 9 9 9 9 9 9 9 9 ))
( 1 (7 32x2yl  16x3yl . 16x4yl . 2x1ly2  16x3y2  16x4y2 N 16x1y3 . 16x2y3  32x4y3  16xly4 N 16x2y4 N 32x3y4
128 9 9 3 9 9 9 9 9

9 3 9 9 > >

2" Row (three entries: C,,,C,,,C,,):

< 1 (_ 32x2y1 N 64x3yl . 3P2x4yl . 2x1y2  32x3y2  64x1y3 N 32x2y3 32x4y3

1 B _ 32x1y4 . 32x3y4> )
128 3 9 9 3 3 9 3 9 9 9
< 1 (_ 32x2y1 N 16x3yl N 16x4yl . 32x1y2  16x3y2 N 16x4y2  16x1y3 N 16x2y3  32x4y3  16x1ly4  16x2y4 N 32x3y4> )
128 9 9 9 9 3 9 9 3 9 9 9 9
< 1 (_ 16x2yl . 16x4yl . 16x1y2  16x3y2 . 16x2y3  16x4y3  16x1y4 . 16x3y4) )
128 9 9 9 9 9 9 9 9

d - .
3" Row (two entries: Cy;,C,,):

( 1 (7 32x2y1 N 32x4y1 N 32x1y2  32x3y2 N 64x4y2 . 2x2y3  3Px4y3  32x1ly4d  64x2y4 N 32x3y4) )
128 9 9 9 3 9 3 3 9 9 3
1

( 7 (-X2y1-x3yl+2x4yl +x1y2-2x3y2+x4y2+x1y3+2x2y3-3x4y3-2x1y4-x2y4+3x3y4) )

4™ Row (one entry: C,,):

( 1 (_ 32x2yl  64x3yl N 32x4yl N 32x1y2  32x3y2 . 64x1y3 . 32x2y3 32x4y3
128

B ~ 32xly4 N 32x3y4> )
9 9 3 9 9 9 9 3 3 3

Table 3.2 Calculation of entries in C matrix for four-node quadrilateral element
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3.2.5 Global Equation Assembly

In this step, the overall system is assembled by starting with zero matrices for K, C and f.
Contributions from each element are sequentially added to the contents of the global
system matrices. While mathematically governed by compatibility and equilibrium
conditions, such an assembly process can be physically interpreted as reconnecting the
discrete members back into the complete structure. The key operation of this assembly
process is the placement of these contributions. Therefore, the mapping between the local
element degree of freedom and global degree of freedom has to be established by using the

mesh information.

After all elements are assembled, it is necessary to condense the equations; that is,
removing the nodal equations corresponding to the boundary nodes with Dirichlet

conditions (i.e. Eq. (2.9)). Thus, the resulting equations are ready for solution.

3.2.6 Equation System Solution

In this step, particular solution procedures will be applied to solve the resultant equation
system corresponding to steady-state and transient problems. For transient problems, the
system forms a set of first-order differential equations in time while a set of algebraic

equations arises in steady-state problems. So, they are treated separately as follows.

3.2.6.1 Steady-State Problem
If the matrix K can be inverted, Eq. (3.10) can be solved by direct methods; for example,

by Gaussian elimination scheme. Since the matrix system is generally large, the methods
taking advantage of the symmetrical, sparse and banded properties of K may lead to many

specialized techniques, among which is the iterative method.
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Instead of attempting to solve equations directly, iterative methods work with the
individual equations which are usually found by solving the terms on the diagonal from Eq.
(3.10). Iterative methods start from a guessed initial field, and sequentially improve the
field by using successive iterations until that individual equation is satisfied to some extent,
in the sense of reaching the tolerance specified in the beginning. It is worthy to note that
the similar iterating equations must be modified near the appropriate boundary to account
for the prescribed boundary conditions in the FD formulation while it is not the case in the

current FE computational scheme.

3.2.6.2 Transient Problem

For transient problems, the resultant equation as in Eq. (3.8) is a set of first-order
differential equations with time t as the independent variable. Thus, the solutions have to
proceed with increasing time until the results are obtained over a specific time level or
until the steady state is attained. In this section, attention is given to the construction of the
time discretization since the spatial one is exactly same as that for steady-state problems
aforementioned. After setting the time interval, one then can march in time, obtaining the

temperature distribution at each time level in terms of the one at the preceding interval.

The most common procedure is to use a finite difference in time with two levels, which
. . . . o da

was described in Section 2.3. Then, one can approximate the derivative term o by two-
t

point finite difference as follows:

da _Tu-T, (3.25)
dt Dr
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At the same time, one has to make a decision regarding at what time level to evaluate the
temperature in Eq. (3.8). The most popular scheme is to use the trapezoidal rule which

uses a linear interpolation between levels n and n+1:
T, =(01-nT, +rT,_, (3.26)

Substituting Eq. (3.25) and Eq. (3.26) into Eq. (3.8) leads to the so-called generalized mid-

point method [31]:

T.-T
K(T tn+r )Tn+r + C(T tn+r)$ + f(T tn+r) = O (327)

n+r? n+r?® n+r?

where ¢,,. =t +rDt with subscript n representing the nth time step.

Eq. (47) can be rearranged as:

Cor i, I =S - K, YT - 1 (3.28)
e D u e Dt u

where C,, means C(T,,,¢,,,) ,sotoowillthe K , and f , .

As described in Section 2.3, different members of this family can be identified by changing
the value of » from 0 to 1.0. Both the choice of » =1/2 (for accuracy considerations [10])

and » = 2/3 (for stability purpose [11]) will be employed in this computational scheme.

Note that, due to the implicit nature, an iteration loop over each time step is required to
maintain accuracy in nonlinear transient problems. That is, the coefficient matrices’
evaluation, assembly and solution have to be performed every iteration within each time

step, which means nonlinear transient analyses are computationally intensive.
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3.3 Numerical Properties of the Computational Scheme
In many situations, questions arise regarding the errors involved in the numerical
computations, as well as the consistency, stability and the convergence of the

computational scheme. Such matters are discussed in the following sections.

3.3.1 Accuracy

It is important to keep in mind that numerical solutions are only approximate solutions. In
addition to the errors that might be introduced in the course of development of the solution
algorithm in programming and machine round-off in calculations, numerical solutions

always include the following three kinds of errors:

Modeling errors: the difference between actual heat flow problem and the exact
solution of the mathematical model described by PDEs. They may be considered negligible
since the governing equations (Eq. (2.3) and (2.6)) represent a sufficiently accurate [4]
model of the flow. However, it is noticed that modeling errors are also introduced by
simplifying the geometry of the solution domain, simplifying initial and boundary
conditions, and neglecting of thermal properties’ temperature-dependency.

In the current computational scheme, the variable thermal properties will be taken into
account. Also, the geometry is limited to the region consisting of straight-lined segments
only; consequently the use of triangular and quadrilateral elements will be sufficient in
modeling the geometry. During the application of boundary conditions, the concrete
surface temperature is assumed the same as the ambient temperature. Although in some
case, skin effect was found to be significant [32], it is ignored in the current scheme since

convection analysis will be involved in this simulation.
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Discretization errors in approximation: the difference between the exact solution of the
governing PDEs and exact solution of discrete approximation. Usually, one selects the
approximations prior to writing a calculation code so the spatial and temporal grid
resolutions are parameters at the user’s disposal to control the accuracy.

In the current computational scheme, bilinear quadrilateral and linear triangular elements
are employed for spatial approximation. The former is more accurate since it contains
additional term xy in the interpolation functions. It is important to remark that by using the
closed-form coefficient matrices, the spatial integrals are exactly evaluated in this aspect.
For the time discretization, the two-level finite difference scheme employed together with
the Crank-Nicholson method is of second-order approximation from a Taylor-series
truncation error analysis [10]. In the case where more stability is required, then the backup

Galerkin scheme is available for use.

Iteration errors in solution: the difference between the iterative and exact solutions of
the algebraic equation system if an iterative process is involved. Usually, iteration is
continued until the magnitude of the residual has been reduced to a certain amount and the
acceptance criterion has been reached. Although this kind of error has nothing to do with
the discretization itself, the effort required to reduce the error to a given magnitude grows
as the number of discrete elements increases. Also, the machine round-off error evolves
with the iteration calculations. In the current computational scheme, the efficient (in the
sense of convergence) Gauss-Seidel iteration scheme is employed, one of the “side” effects
of which is the reduction of the round-off errors created since it converges faster than

standard schemes.
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3.3.2 Consistency

A discretization scheme is called consistent if the discretized equations converge to the
given PDEs when both the time step and grid spacing tend to be zero. In other words, the
consistency condition of the numerical method requires that the discretization error

approaches zero as the mesh is refined.

In the spatial FE discretization, two requirements for the consistency condition are

addressed below.

1. Completeness requirement: the element must have enough approximation power to
capture the analytical solution in the limit of a mesh refinement process. More precisely,
the element shape functions must represent exactly all polynomial terms of order £ m (m
is the variational index) in the Cartesian coordinates. In this aspect, the employed linear
and bilinear elements are obviously satisfied with m =1, as the field variable T appearing
in the weak form integral statement (i.e. Eq. (2.6)) possesses derivatives up to the first

order only.

2. Compatibility requirement: the shape functions must provide continuity between

elements. Physically, this requirement insures that no material gaps appear as the elements
deform. Mathematically, patch shape functions must be C"™' (m as above) continuous

between interconnected elements, and C™ piecewise differentiable inside each element.

Again, obviously the employed finite element types are satisfied in this aspect.

Concerning the two-level finite difference approximation in time, it is plain to see that the

approximation error (O(D¢?)) vanishes as Dt ® 0, and consequently it is consistent.
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3.3.3 Stability

Even if the approximations are consistent, the solution of the discretized equation system
will not necessarily become the exact solution of the PDEs in the limit of small spatial and
temporal step sizes. For this to happen, the solution method has to be stable. A numerical
solution method is said to be stable if it does not amplify, without bounds, the errors that

appear in the course of numerical solution process.

In the spatial FE discretization, stability is not a property of interpolation functions per se
but of the employed element as well as its geometrical definition. Mathematically, there

are two requirements for the stability condition:

1. Rank Sufficiency: the element stiffness matrix must not possess any zero-energy

kinematic modes other than rigid body modes.

2. Jacobian Positiveness: the geometry of the element must preclude the excessive
element distortion such that the determinant of the Jacobian matrix remains positive

everywhere.

With the choice of bilinear quadrilateral or linear triangular elements, the above stability
conditions are naturally satisfied since closed-form evaluation, instead of Gauss quadrature,

is employed in the current computational scheme.

Regarding the temporal discretization, the two-level finite difference together with implicit
Crank-Nicholson or Galerkin method is unconditionally stable for linear or weakly
nonlinear problems and shows good but prudent [31] stability for highly nonlinear
problems. Consequently, the coefficient matrices will be evaluated during every round of

iteration within each time step in the current computational scheme.
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3.3.4 Convergence

The term convergence is used not only in conjunction with error reduction in iterative
solution methods, but is also often associated with the convergence of numerical solutions
towards a grid-independent solution, in which case it is closely linked [33] to discretization
error. Therefore, in an iterative analysis, two different concepts of convergence are

required for both discretization and iteration:

1.  Discretization: Numerical solutions are said to be convergent if the discretization
error approaches zero as the grid spacing and time step are refined. In this sense, the exact
solution is approached numerically by mesh refinement. The well-known Lax-Wendroff
theorem says that satisfying consistency and stability is the necessary and sufficient
condition for convergence. From the previous description on consistency and stability, one
can see the current computational scheme will converge in the sense of discretization.

2. Iteration: Iterative processes are said to be convergent if the iterative errors approach
zero as the number of iterations increases. In practice, one can specify the criterion for

convergence, such as:

|Ts+1 - TS

£e (3.29)

to determine whether or not to continue to the next round of iteration.

Although the initial guessed distribution of 7 is a very important factor in the iterative
method, convergence with the iterative method does not depend on that initial guess but on
the character of the coefficient matrices. In the current computational scheme, the diagonal
dominant coefficient matrices guarantee the convergence, and the adoption of Gauss-

Seidel method makes it faster than standard iterations.
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3.4 Closure

In this chapter, a computational scheme was described step-by-step. With the use of
proposed FE computational scheme, some difficulties were solved, which include
accounting for temperature-dependent thermal properties, specifying time-varying
boundary thermal loads, developing closed-form coefficient matrices, and considering heat
of hydration. Also, various numerical properties of this computational scheme were

evaluated. In the next chapter, some relative codes will be implemented and presented.
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Chapter 4 Gode Implementation

This chapter presents the developed subroutine V2HEAT, which implements the proposed
computational scheme described in Chapter 3. Also, necessitated by follow-up stress and
deformation analyses after temperature calculations, reduction of mechanical properties at
evaluated temperatures is calculated and the relative code is implemented in V2TRED. In
addition, some auxiliary subroutines are described here as well, which include the code in
Mathematica for the closed-form element matrix formulation and the code in MATLAB

for temperature distribution contour plot.

The developed codes will then be embedded into program VecTor2, a nonlinear finite
element analysis (NLFEA) program for reinforced concrete two-dimensional structures.
The behaviour analysis platform incorporated into the VecTor2 enables calculation of the
response of reinforced concrete elements subject to in-plane normal and shear stresses in
the second-order accuracy. VecTor2 primarily reads three types of input files, i.e. job,
structure and load files. VecTor2 outputs binary and ASCII test files for analysis results for

which the software Augustus provides graphically post-processing capabilities.

4.1 V2ZHEAT in FORTRAN
Generally, the subroutine V2HEAT (listed in Appendix C) is developed to facilitate
program VecTor2 in performing 2D nonlinear steady-state and transient conduction

thermal analysis by using the FE method.
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Functionally, V2HEAT compromises between the often conflicting demands of generality
and efficiency of applicability and ease of use. Globally, this subroutine has the same
breadth of applicability as the FE computational scheme described in Chapter 3. It
accounts for the nonlinear temperature-dependent thermal properties for various concrete
and steel. Also, it is applicable to time-varying thermal loads. While it is limited in that it
currently does not allow for heat-of-hydration, it may be later incorporated by specifying
corresponding thermal loading, as formulated in Chapter 3. Furthermore, the same finite

element data used in main-program VecTor2 are employed in this heat analysis.

Structurally, V2ZHEAT consists of one main sub-program and some subsidiary subroutines.
The main sub-program is the core which has a controlling function: initializing the
calculations according to VecTor2’s input, monitoring the progress of calculations
performed as they proceed through different time steps, iterating operations within each
time step, and producing and restoring the resultant temperature fields at different stages.
The subsidiary subroutines perform corresponding particular operations or calculations and
are invoked by the main sub-program. Thus, the code has been deliberately structured so

that it adapts to different problems.

Schematically, a flowchart to represent the stream of implemented procedures is shown in
Fig. 4.1, from which one can see that the loop of iteration for nonlinear thermal properties
and the loops of time-advancing for transient analysis are at the core of the whole
computational scheme. In practice, the code specifies the criterion of convergence for
iteration and uses an external time frame (if any, e.g. time-step analysis model in VecTor2)

or internal time interval for time-advancing.
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Specification of parameters and control indices

!

Initialization operations
(Read in mesh information and prescribe initial temperature field)

J

< Time and iteration loops >

Loop of time-advancing

¢l

Store the current temperature field

J

Advance time ¢t =¢+ Dt

L«

Evaluate temperature-dependent thermal properties for elements

\Z

Assemble coefficient matrices to form final equations system

Il

Solve the system by Crank-Nicolson or Galerkin scheme

Loop of iteration

Iteration converged? No
l Yes
l Yes

Final operations
(Output information and calculate temperature on elements’ centroids)

Figure 4.1 Flowchart of V2HEAT
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4.2 V2TRED in FORTRAN

In addition to V2HEAT, the subroutine V2TRED is modified and updated to account for

variation of mechanical properties at evaluated temperature up to 1200°C . A simple
annotated source code is attached in Appendix D. For those properties which are given
directly in a tier-by-tier manner, the relative coding is quite straightforward. The only
exception is the thermal expansion property. The variation of this property for both
concrete and steel was plotted in Section 2.4.2. It can be seen that both concrete and steel’s
thermal expansion would cease altogether at certain degree of temperature. However, the
thermal strain is developed progressively, so zero thermal expansion implies only that no
change of thermal strain occurs at that temperature. In addition, the use of formula for
calculating thermal strain at high temperatures in VecTor2 does not allow one to specify
the thermal expansion reduction (in this case, increasing) factor to be zero (otherwise, the

thermal strain will be zero from Eq. (4.1)).

ethermal =DT (T) = (T - Tre 'er) Xf a refer (4 1)

where f'is the reduction factor of thermal expansion at temperature 7. In fact, the above
equation is originally based on the assumption of a constant thermal expansion. In order to
keep this equation valid, the use of zero thermal expansion during some range of

temperatures is implemented in an implicit way. That is, the a (7’) in the equation is taken

(interpreted) as the average value of thermal expansion in the temperature range 7., to T,

refer
instead of the one in that temperature 7. As a result, the reduction factor calculated from
the formula above is actually the range-average thermal expansion. In doing so, the real

zero thermal expansion and non-zero thermal strain are maintained.
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4.3 Closed-Form Element Matrices in MATHEMATICA

VecTor2 models reinforced concrete elements (plain concrete or concrete with smeared
reinforcement) by using three types of element: constant strain triangle, standard rectangle
and bilinear four-node quadrilateral. All element matrices are formulated in the closed-
from in VecTor2, without resorting to the numerical integration. Due to the constant
Jacobian, the closed-form formulations can be easily obtained for the triangular and

rectangular elements, even with a full (but still symmetrical) material matrix D as follows:

éDn D, D D, u
e u
N D D D,
D= g 2» 23 243 4.2)
a Dy, D, i
gym D,q

While the conductance and capacitance matrices for triangle and rectangle may be
available in some literature, they can be easily obtained by using high-level languages,
such as MATHEMATICA. In the example of the rectangular element shown in Chapter 2
(i.e. Fig. 2.2), the MATHEMATICA code is given in Figure 4.2 for general stiffness
matrix development. The symbolic-form element matrix is also outputted in the same
figure, with the assumption that the thickness of the element is unity. The stiffness matrix
obtained can then be reduced to the conductance matrix as given in Section 3.2.4.2 since in
heat analysis the material matrix is actually a scalar instead of a 3° 3 matrix and the
degree of freedom on each node is single. The corresponding capacitance matrix
development is given in Fig. 4.3. Since the element nodal coordinates in the code are

specified as (x;,y;) instead of (*a,*b) , it can be actually applied to a four-node

quadrilateral element as well.
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X={-a a, a, -a}; y={-b, -b, b, by;
N={(1-8)*(1-n), (L+& *(L-n),
1+ x (L+m), (1-&)+«(1+n)}/ 4
dNe = DINF, €1; d\p = DINF, n];
J11 =dNg. x; J12 = dNg. y; J21 = dNg. x; J22 = d\q. y;
J = ({J11, J123, {J21, J22}};
Jdet = Snplify[J1l«J22 -J12%J217;
detJ =S nplify[J1ll«J22 -J12%J21];
dNK = (J22% dNg - J12 « dNy) / det J; dNk = S npl i fy [dNX];
dNy = (-J21 «dNg + J11+dNy) /detJ; dNy = Sinpl i fy[dNy1;
B= {(Flatten[Tabl e[ {dNx[[i 11, O}, {i, 4}11,
Hatten[Tabl e[ {0, dNy[[i 11}, {i, 4}11,
Hatten[Tabl e[{dNy[[i 11, d\X[[i 11}, {i, 4}11};
Dmat = {{D11, D12, D133, (D12, 22, D23}, (D13, 23, DB83}};
K=S nplify[Transpose[B]. (Dmat.B)1;
For [i =1, i <8, i ++,
For [j =1,j <8, j++,
KLIi, 11 =Integrate[K[[i, j11, {& -1, 1}1;
KLIi, j11 =Integrate[K[[i, j11, {n, -1, 1}1;
L
Kl =K[[11]; R =K[[2]]; K3=K[[3]]; K4 =K[[4]];
K5 =K[[5]]; K6 =K[[6]]; K7 =K[[7]]; KB =K[[8]];
Print ["Selected row of K Matrix due to space linmt"]
Print ["KL=", KL // MatrixForm "K6=", K6 // Matri xForm;
Selected row of K Matrix due to space linit

[ ng Ol .gabpi3. 1625 083 a§'383 | [ -sapp2-8b°0I3 b23m3 - 8273 a23523 4abrs3 |
16a2h? 1682 b2
dabDi2s 16b§Dl3+16a§I:23 4ablB3 78a23E2278abm378b23I33
16a2h? 1682 b2
16b§ D1178a23I283 74ab|1278b23D13+16a§I:23 dab83
B 16a2h? B 1682 b2
dabDi2: 16b§m378a23m3+4ab|:83 16a§|:2278b23I283
K1= B 16a2h? K6= B 1682 b2
778b23Dll 78abDl3778323Dg3 4abm2+16b§'13+ 16&§ 23 4abre3
16a2b2 1622 b2
~4apDr2-807 013 b23D13 ~8a°[p3 323523 ~4abre3 1627 22 ag P2 ,8abrp3. 1607083 b§ C83
16a2b2 1622 b2
8b23D117 16a§|:83 dabDi2: 16b§D1378a23I:23 4abCB3
16a2b2 B 1682 b2
4abD1278b23m3+ 16a§|:23 4abCB3 8a23I:227 16b§r133
\ - 16a2h? ) \ 1622 b2

Figure 4.2 Rectangle’s stiffness matrix calculation in Mathematica
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X = {X1, X2, X3, x4}; y = {y1, y2, y3, y4};
N ={{(1-)*x1-n), L+ *(L-n), 1+ *(L+n), (L-€) »(1+n)}/4};
N T = Transpose [N ]; dNs = DINF, €1; dN\p = DINF, n1;
J11=dNe. x; J12 =dNg.y; J21 =dNyg. x; J22 = dNp. y; J = {{J11, J12}, {J21, J22}};
detJ =Snplify[J11%J22-J12J21]; QM= NT. N ;
For [i =1, i <=4, i ++, For [j =1, | <=4, | ++,
OM[i, j11 =Integrate[detd «OM[i, j 11, {& -1, 1}, {n, -1, 1}1;1;1;

Cl=aup1]1; Print ", Cl1;
1 ( 32 x2yl 32 x4 yl 32 x1y2 32 x3 y2 64 x4 y2 32 X2 y3 32 x4 y3 32 x1 y4 64 X2 y4 32 x3 y4 )}
- + + - + - - + + ,

{{128 3 3 3 ; 9 9 9 9 3 9 9
1
{7 (73x2y1+x3y1+2x4y1+3x1y272x3y27x4y27x1y3+2x2y37x4y372x1y4+x2y4+x3y4)},
72
{ 1 ( 16 x2 yl 16 x4 y1 16 x1 y2 16 x3 y2 16 x2 y3 16 x4 y3 16 x1 y4 16 x3 y4)
_— + - + - - + y
128 9 9 9 9 9 9 9
{ 1 ( 32 x2 yl 16 x3 yl1 16 x4yl 32x1y2 16 x3 y2 16 x4 y2 16 x1 y3 16 x2y3 32x4y3 16 x1 y4 16 x2y4 32 x3y4d )}}
e + + - - + + - - + +
128 9 3 9 9 9 9 9 9 3 9 9
C3=OM[3]]; Prlnt[ , C31;

1 (16x2y1 16x4y1 16 x1 y2 16 x3 y2 16 x2 y3 16 x4 y3 16 x1 y4 16x3y4)}
—_— |- + + - + - - + y

{

128 9 9 9 9 9 9 9 9
{ 1 ( 32 x2yl 16 x3 y1 16 x4yl 32x1y2 16 x3 y2 16 x4 y2 16 x1 y3 16 x2y3 32 x4y3 16x1yd 16x2y4 32x3y4d )}
— (- + + + - + - + - - - + ,
128 9 9 9 9 3 9 9 3 9 9 9 9
{ 1 ( 2 x2yl Rx4yl R2x1y2 32x3y2 64x4y2 R2x2y3 Rx4y3 32xlyd 64x2yd  32x3 y4)

- + + - + + - - - + ,
128 9 9 9 3 9 3 3 9 9 3
1
{— (-x2yl -x3yl+2x4yl+x1y2-2x3y2 +x4y2+x1y3+2x2y3-3x4y3 -2x1y4-x2y4+3x3y4)}}
72

Note that the above capacitance matrix excludes the multiplier of material coefficients (e.g. density and specific heat) which are
usually taken as constants within each element.

Figure 4.3 Quadrilateral’s capacitance matrix calculation in Mathematica
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The considerable potential of the Computer Algebra System (CAS), for example
Mathematica and Maple, will be further demonstrated when constructing stiffness matrix
for a general quadrilateral element. While a code similar to the one shown in Fig. 4.3 can
be used in the derivation, the computation would likely never stop proceeding due to the
rational Jacobian involved. In other words, the analytical expression for the fully integrated
stiffness matrix of a quadrilateral four-node element does not seem to exist. Based on CAS
and under the assumption of an isotropic elastic material, Reference [34] describes this
stiffness matrix in a closed form by expanding and simplifying the terms in numerical
integration summation. Since the CAS has a limited ability to simplify and factorize
complex algebraic terms, one would have to further simply the expression produced by
CAS in order to arrive at a suitable form for thesis writing or publication. To save effort on
editing those expressions by hand, the algorithm in Reference [34] is used. However, to
account for the anisotropy of reinforced concrete, the material matrix will be fully
populated as shown in Eq. (4.2). Through an analysis done (shown in Fig. 4.4) on the
material matrix, the computation algorithm for the stiffness matrix of a general
quadrilateral element with a full material matrix is realized by a process of summation.
Then, for heat analysis, the conductance matrix can be obtained if one specifies the single

degree of freedom on each node and realizes that the material matrix is actually a scalar.

VecTor2 previously divided the quadrilateral element into two triangles, sharing the
shortest diagonal as a common edge, analyzed them separately and then took an area
average of the strains in each triangle. To alter this ‘historical’ way of analysis, the
subroutine V2STIF is modified based on the developed closed-form stiffness matrix

algorithm.

61



CHAPTER 4 CODE IMPLEMENTATION

Del astic = {{EL, E2, 0}, {E2, EL, 0}, {0, O, G}; Dfull = {{Cl1, Cl2, C13}, {Cl2, @2, 23}, {Cl3, 23, C33}};

Dconnex = {{El, B2, Cl3}, {E2, @22, X33, {C13, 23, G}}:

B= {{Nlx, 0, N2x, 0, N3x, O, N4x, 03,

(
K | (A3 NIX +GNly ) NX + (2 NIx + @3 Ny ) Ny (GNIX + @3 Nly ) NX + (@3 NIx + @2 Ny ) Ny
| (ELNIX +QA3 Ny ) N&x + (A3 NIx + GNly ) Ny (A3 NIx +E2 Nly ) N&x + (GNIx + @3 Ny ) Ngy
(A3 NIX +GNly ) N&x + (2 NIX + @3 Nly ) Ny  (GNIX + G223 Nly ) N&x + (G223 NIx + @2 Ny ) Ngy
(ELNIXx +A3 Ny ) Nix + (A3 NIx + GNly ) Nly (A3 NIx +E2 Nly ) Nix + (GNIx + @3 Ny ) Nly
| (A3 NIx +GNly ) Nix + (2 NIXx + @3 Nly ) Nly (GNIx +@3 Ny ) Nix + (@23 NIx + C2 Ny ) Nly
Nly (G N2x + C23 N2y ) + NIx (Cl3 N2x + E2 N2y ) N1x (E1 N3x + C13
Nly (C23 N2x + C22 N2y ) + NIx (G N2x + C23 N2y ) Nly (E2 N3x + C23
N2y (G N2x + C23 N2y ) + N2x (C13 N2x + E2 N2y ) N2x (E1 N3x + C13
N2y (C23 N2x + C22 N2y ) + N2x (G N2x + C23 N2y ) N2y (E2 N3x + C23
(C13 N2x + E2 N2y ) N3x + (G N2x + C23 N2y ) N3y N3x (E1 N3x + C13
(G N2x + C23 N2y ) N3x + (C23 N2x + C22 N2y ) N3y N3y (E2 N3x + C23
(C13 N2x + E2 N2y ) Nd4x + (G N2x + C23 N2y ) Ndy (E1 N3x + C13 N3y )
(G N2x + C23 N2y ) Ndx + (C23 N2x + C22 N2y ) Nby (C13 N3x + G N3y )
Ny (CNBx +@3 NBy ) + NIXx (CI3 NBx + 2 NBy) NIx (ELNIX +C3 Ny ) + Nly (A3 NiX + CNly)
Ny (@3 N8x +C2 Ny ) + NIx (GNBx + @23 NBy) Ny (B2 Nix +C@3 Ny ) + NIx (A3 Nix + GNly )
Ny (GNBx +C3 Ny ) + N (CI3 NBx + 2 NBy ) MNX (ELNix +C3 Ny ) + Ny (A3 Nix + GNly )
Ny (@23 NBx +C2 NBy ) + X (GNBx + @23 Ny ) Ny (B2 Nix + @23 Nly ) + NXx (C3 Nix + GNly )
Ny (GNBx +C23 Ny ) + NBx (CI3 NBx + 2 NBy ) MNBx (ELNix +CI13 Ny ) + N8y (A3 Nix + GNly )
Ny (O3 NBx +C2 Ny ) + NBx (GNBx + @3 NBy) N8y (B2 Nix +C23 Nly ) + NBx (C13 Nix + GNly )
(A3 Nx +E2 NBy ) NIx + (GNBx + @23 NBy ) Nly Nix (EL Nix +Cl3 Nly ) + Nly (C3 Nix + GNly )
(GNBx +C23 NBy ) Nix + (3 NBx + C2 Ny ) Ny Ny (B2 Nix +C3 Ny ) + NIix (A3 Nix + GNly )

(NIx (EL Nx +@3 Ny ) + Ny (A3 NIx + CNly )
Ny (E2 Nix +C3 Ny ) + Nix (A3 NIx + GNly )
EL NIx +QA3 Ny ) NX + (A3 NIx + GNly ) Ny

{0, N1y, 0, N2y, O, N3y, O, Ndy}, {Nly, Nix, N2y, N2x, N3y, N3x, Ndy, NAx}};
BT = Transpose[B]; Ktenp = Del astic. B, K=BT. Ktenp; Print ["Kel astic=", K// MatrixForny; Ktenp=Dful|l.B; K=BT. Kt enp;
Print ["Kfull =", K// MatrixForm; Ktenp=Dconnex. B; K= BT. Ktenp; Print ["Kconnex=", K// MatrixForm;

Ny (GNIx +C3 Ny ) + NIx (A3 Nix + B2 Ny )
Ny (C3 NIx +C2 Nly ) + NIx (GNIx + C3 Nly )
(A3 NIX +E2 Nly ) NX + (GNIx + 3 Nly ) Ny

Note: Dconnex-Delastic will be the terms in summation process to obtain Dfull.

NIx (EL Nx +Q3 Ny ) + Ny (A3 NX + CNy )
Ny (B2 Nx +@3 Ny ) + NIx (A3 NX + GNy )
NX (EL N +A3 Ny ) + Ny (A3 NX + GNy )
Ny (B2 Nx +C@3 Ny ) + Nx (A3 NX + GNey )
ELNx + QA3 Ny ) N&x + (A3 NX + GNey ) Nay
A3 NXx +GNy ) N&x + (2 NX + @23 Ny ) NBy
ELNx + QA3 Ny ) Nix + (A3 NX + GNey ) Ny
A3 NXx +GNy ) Nix + (2 NX + @23 Ny ) Nly
N3y ) + N1y (Cl3 N3x + G N3y )
N3y ) + N1x (C13 N3x + G N3y )
N3y ) + N2y (C13 N3x + G N3y )
N3y ) + N2x (C13 N3x + G N3y )
N3y ) + N8y (C13 N3x + G N3y )
N3y ) + N3x (C13 N3x + G N3y )
Ndx + (C13 N3x + G N3y ) Ndy
NAx + (E2 N3x + C23 N3y ) N4y

Ny (GNx +C3 Niy) +NXx (03 Nix + 2 Ny) |
Ny (C3 Nix +C2 Ny ) « NIx (GNIX + C3 Niy )
Ny (GNix +C3 Niy ) + Nx (Cl3 N + 2 Ny )
Ny (C3 Nix +C2 Ny ) + NX (GNIX + C3 Niy )
Ny (GNIx +C3 Ny ) + N&x (Cl3 N + 2 Ny )
Ny (C3 Nix +C2 Niy ) « N&x (GNIX + C3 Niy )
Ny (GNix +C3 Niy) + Nix (CI3 N + B2 Ny )
Nly (C3 Nix +C2 Ny ) + NX (GNiX + C3 Niy ) )

Figure 4.4 A material matrix analysis for the calculation of the stiffness matrix
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4.4 Temperature Distribution Contour Plot in MATLAB
To display the calculation results in graphics, a MATLAB code is developed (as shown in

Fig. 4.5) for contour plots of temperature distribution.

function feaPlotS(ndS, ndXY, elT, u, scl)

% This function plots the required temperature fields
% Input:

% ndS (nd Temp, ndStress or ndStrain):

% should be a column vector of values to be plotted
% ndXY: nodal coordinates

% elT: element topology

% u: nodal displacements

% scl: scale factor for deformation

hold on;

dXY =ndXY(:,2:3);
if nargin > 3
for i=1:size(ndXY,1)
dXY(,1)=dXY(@,1) + scl * u(2*i -1);
dXY(1,2) = dXY(1,2) + scl * u(2*i );
end
end

% following commands draw the contour plot

for e=1:size(elT,1)
xy = [dXY(elT(e, 2:5), 1), dXY(elT(e, 2:5), 2)];
patch(xy(:,1), xy(:,2), ndS(elT(e, 2:5)));

end

%[ms,n]=max(ndS);text(dXY(n,1),dXY(n,2),int2str(n),
'horizontalalignment','center’,'verticalalignment','middle");

axis equal;
colorbar;
hold off;

Figure 4.5 Contour plot of the temperature distribution in MATLAB
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Chapter & Numerical Corroboration

To assess the performance of the computational scheme presented in Chapter 3 and the
code implementation described in Chapter 4, this chapter will carry out four numerical
corroborative problems. While different investigated problems are designed to fulfill
different objectives, each of them consists of: problem description, computational models,

and results and discussion.

5.1 Problem 1: Temperature Profiles

The purpose of Problem 1 is to verify the temperature profile throughout the depth of a
cross section. As such, some simplifications are made that bypass the time-varying thermal
loads and temperature-dependent thermal properties. Also, no internal heat resource is

present in this problem.

Problem description:

Fig. 5.1 shows the cross section of a long square bar, initially at zero temperature
everywhere. A constant temperature 7 =100°C is suddenly imposed on the upper surface,

while temperatures on the remaining surfaces are held at 7 =0°C . The task is to compute
the development of the temperature field within the bar’s cross section until the final

steady-state condition is reached.
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T=100°"C

Density: r =7850 (Kg/m’)
T=0C T=0C Conductivity: k£ =52.0 (J/m-s-K)
Specific heat: C, =460.0 (J/Kg-K)
h=1.0m

w=1.0m T=0C

A
A

Figure 5.1 Numerical test problem 1

Computational model:

Figure 5.2 The finite element model for Problem 1

As shown in Fig. 5.2, a 11" 11 uniform computational grid is employed so that there are
127 12 =144 nodes within the model. The model will be analyzed through 100 time steps

of 50s duration, with a maximum of 100 iterations allowed at each time step. The criterion

for convergence of iterative computations is prescribed to be 1.0” 107 . In addition, the
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time stepping factor (i.e. » value in Eq. (3.26)) is set to be 0.5, which corresponds to the

most accurate Crank-Nicholson scheme.

Results and discussion:
The nodal temperature distribution within the structure is generated by the code. By
examining the data on the vertical center line, the temperature profiles for both steady-state
and transient analyses are obtained and plotted in Fig. 5.3. The graphic contour plots of
temperature distribution, generated by a MATLAB code, are also given in Fig. 5.4 (a-e).

Based on these results, some observations are discussed below.

1. Temperature profiles (or thermal gradients):

The transient thermal gradients are exceedingly nonlinear shortly after the thermal load is
applied, while the steady-state analysis produces a fairly linear one. One can observe from
Fig. 5.3 that the transient temperature profiles of listed durations (from 50s to 5000s)
gradually approach the steady-state one as time advances. Thus, it can be expected that as
time continues to proceed, there is one ending stage of transient thermal analyses when all
transient effects have diminished and the corresponding temperature profile will be

consistent with the one obtained from the steady-state analysis.

2. Thermal stress:

In this problem, continuity thermal stresses will not be induced because of the determinate
nature of this problem from a structural viewpoint. However, due to the transient nonlinear
thermal gradient, primary thermal stresses will be produced in the section. Nevertheless,
the nonlinear thermal gradients approach the linear steady-state condition and, as such,

primary thermal stresses in the section will diminish gradually as time advances.

66



CHAPTER 5 NUMERICAL CORROBORATION

3. Time stepping schemes:

As mentioned in Sections 2.3 and 3.2.6.2, the time stepping factor » can be specified by
using either the Crack-Nicholson scheme for accuracy considerations or the Galerkin
scheme for stability purposes. In both Fig. 5.3 and Table 5.1, some oscillatory errors are
observed during the analyses over a number of starting time steps. However, it appears that
such errors diminish as time proceeds. If stability of the solution is a strong concern in the
very beginning stages of the analysis, the Galerkin time stepping scheme can be used

instead since it produces less oscillatory error than the Crank-Nicholson scheme.

4. Boundary conditions:

The boundary condition that a zero temperature is held on both side edges of the section
plays a key role in the resultant temperature distribution. A steady-state analysis on the
section without prescribing the above conditions is tested, with the relevant temperature
distribution given in Fig. 5.4 (f). It turns out that, without these conditions, the heat
analysis can be actually reduced to the 1D case since the resultant temperature distribution

is in a parallel-strip manner.
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Figure 5.3 Temperature profiles through the depth of the cross section

Node | Depth Nodal Temperature at. Degree C
No. (m) Steady Transient

State 50s 200s 500s | 1000s | 2000s | 3000s | 4000s | 5000s
30 1 100.0 | 1.00E+2 | 1.00E+2 | 1.00E+2 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0

94 10/11 81.7 1.19E+1 | 3.18E+1 | 4.90E+1 | 61.1 70.8 75.0 77.3 78.7
93 9/11 64.8 | -1.99E+0 | 2.44E+0 | 1.57E+1 | 30.5 45.4 52.5 56.5 59.0
92 8/11 50.1 3.35E-1 | -6.98E-1 | 2.49E+0 | 11.9 26.0 34.1 39.1 42.3
91 7/11 38.1 -5.62E-2 | 493E-2 | -1.15E-1 | 34 13.1 20.5 25.5 29.0
90 6/11 28.5 9.43E-3 | 1.34E-2 | -7.32E-2 | 0.6 5.8 114 15.7 19.0
89 5/11 20.9 | -1.58E-3 | -6.04E-3 | 8.98E-3 0.0 2.2 5.8 9.2 11.9
88 4/11 15.0 2.66E-4 | 142E-3 | 1.81E-3 0.0 0.7 2.7 5.0 7.1
87 3/11 103 | 4.45E-5 | -2.24E-4 | -7.10E-4 | 0.0 0.2 1.1 2.5 4.0
86 2/11 6.4 7.46E-6 | 1.41E-5 | 6.74E-5 0.0 0.0 0.4 1.2 2.1
85 1/11 3.1 -1.22E-6 | 5.28E-6 | 1.70E-5 0.0 0.0 0.1 0.5 0.9
7 0 0.0 0.00E+0 | 0.00E+0 | 0.00E+0 | 0.0 0.0 0.0 0.0 0.0
Data in shaded columns (over 50s, 200s and 500s) are in scientific numbers to show the oscillation involved.

Table 5.1 Nodal temperatures on the center line in Problem 1
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Figure 5.4 Temperature contour plots in Problem 1
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5.2 Problem 2: Accuracy Comparisons

This problem is proposed to compare the accuracy of the results obtained from the
developed code with those from ANSYS. While the code runs independently on VecTor2,
some essential features of the computational scheme, such as multi-domain, variable-

thermal-property, and quadrilateral-element, are involved in the analysis.

Problem description:
This is a nonlinear transient heat transfer analysis of a simplified casting process (phase
change in the solidification process is ignored), which is given in ANSYS Guide [35]. The
objective is to track the temperature distribution in the steel casting and the L-shape sand
mold, as shown in Fig. 5.5. While convection occurring between the sand mold and the
ambient air is neglected, conduction occurring between the steel and the sand mold is
analyzed. The material of the sand mold has constant material properties while the casting
steel has temperature-dependent thermal conductivity. The detailed material properties are

given in Table 5.2.

Model 5/ Steel
& F”g,_ Sand
T 4 in 7
12in  4in . ' 1 in =254 mm
.L 41in \J
‘f L_ \Eymmetry plane
— 14 in —a  |o—

4 in 4 in

Figure 5.5 Numerical test problem 2
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Item U.S. Customary S.I. Equivalent

Material properties for sand:

Conductivity 0.025 Btulhr - in-°F 0519 W/mK

ls);:sgc heat 0.054 Ib/in’ 1495 kgm’

0.28 Btul/lb-"F 1172 J / kgK

Material properties for steel:

Density: 0.25 Ib/in’ 6920 kgm>

Specific heat: 0.11 Bau/lb-° F 460.6 J | kgK

Conductivity: at 0°F (- 17.8°C) 144 Btul hr- in-° F 299 W/imK
at 2643°F (1450°C) 1.54 Btu/hr - in-" F 320W/ImK
at 2750°F (IS10°C) 1y o by - in-" F 253 WimK
at 2875°F (1580°C) 1.20 Btu/hr-in-°"F 250 WimK

Table 5.2 Material properties in Problem 2

Computational model:
A 2D analysis of a one unit thick slice will be performed. Half symmetry is used to reduce
the size of the model, in which the lower half is the portion modeled. As the computational
mesh in Fig. 5.6 shows, quadrilateral elements are employed in this analysis. Since the
initial conditions are the starting point for a transient thermal analysis, one needs to specify

both the initial temperatures of the steel casting (2875° F') and the sand mold’s ambient

temperature (80°F ). In addition, to make the final equation system non-singular, the
boundary condition is added in such a way that the temperatures on the four external
corners are held at 80° F . The final time in this analysis is set at 3 hours, with the interval
equal to 0.01 hour and the time stepping factor equal to 2/3 which corresponds to the

Galerkin method instead of the Crank-Nicholson method tested in Problem 1.
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Figure 5.6 The finite element model for Problem 2

Results and discussion:
While the whole set of nodal temperature data can be directly obtained from the program’s
output files, due to space limits only selected time steps’ results are included, which
correspond to time steps equal to 0.25h, 0.5h, 1.0h, 2.0h and 3.0h. For the purpose of
comparison, the exact same mesh system (including numbering of nodes and irregular
quadrilateral elements) will be used in analyses with both ANSY'S and the developed code
V2HEAT. Also, an identical time advancing size is used for the same reason. Both a data-
list of the nodal temperatures and a contour-plot of its distribution are provided. Some

discussion is given below based on the results.

1. Contour plots:

Contour plots of the temperature distribution for both analyses are shown in Fig. 5.7. Due

to technique difficulties in programming, the nodal numbering system remains in contour
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plots for V2HEAT. Also, the temperature scale shown is lightly different between each
other. In spite of these display problems, one can readily see their similarity or closeness in
the heat conduction trend. It is likely both of them are capable of capturing the heat

conduction involved in this problem.

2. Nodal temperature listings:

In order to examine the difference between the two analyses more precisely, some
investigation of local representative (circled in Fig. 5.6) nodal temperatures are given in
Table 5.3 for statistic comparison. In addition, graphically compared in Fig. 5.8 are the
time-history temperature curves of the model’s center (node 214). From both comparisons,

V2HEAT is believed to be very similar to ANSYS in accuracy.

3. Imperial units:

Imperial units are used in both analyses. It follows that V2ZHEAT does not have the

restriction on units provided all parameters are consistent in units.
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Figure 5.7 Temperature contour plots in Problem 2
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Figure 5.8 Time-history temperature curves of the model’s center

Rep. T(V2HEAT)/T(ANSYS)
Node 0.25h 0.5h 1.0h 20h 3.0h
Number
)14 2652.5/2512.2 | 2469.6/2429.0 | 2222.5/2189.7 | 1924.8/1901.1 | 1740.4/1721.7
=1.056 =1.017 =1.015 =1.012 =1.011
9 201.42/202.38 | 388.92/456.30 | 674.45/736.84 | 954.07/985.18 | 1086.7/1109.2
=0.995 =0.852 =0.915 =0.969 =0.980
124 187.52/178.31 | 355.19/410.29 | 613.98/669.21 | 863.65/889.17 | 979.65/995.42
=1.052 =0.866 =0.918 =0.971 =0.984
o 181.69/161.43 | 349.68/396.52 | 635.30/697.88 | 966.71/1007.2 | 1146.1/1176.3
=1.125 =0.882 =0.910 =0.960 =0.975
Mean 1.058 0.904 0.940 0.978 0.988
%‘332((‘;5 (4.356+7.296+4.647+2.051+1.411)/5=3.95

COV": coefficient of the variation defined as percentage of ratio (standard deviation/mean).

Table 5.3 Statistical comparisons in Problem 2
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5.3 Problem 3: Various Thermal Loads

Unlike Problems 1 and 2, where the code runs independently of VecTor2, this problem
requires a structural analysis be performed after the heat analysis capacity is implemented
through the incorporated subroutine V2ZHEAT. Also, the modified V2TRED will allow one
to take mechanical properties’ temperature dependency into account when determining a
section’s response to various thermal loads. Taking advantage of VecTor2’s built-in
realistic constitutive models, one can then expect some structural response to the applied

time-varying thermal loads.

Problem description:
The simply-supported reinforced concrete beam considered is shown in Fig. 5.9, with
details of the material properties given in Table 5.4. In this example, two reinforced
concrete material types are used. One type models the plain concrete comprising the flange,
while the other models the web region of the beam with one smeared reinforcement
component representing the stirrup reinforcement. Also, two ductile steel reinforcement
material types are utilized to model the longitudinal steel bars. The beam is subjected to
gravity load in addition to thermal loads which simulate fire underneath. The analyses are
expected to determine both the internal (e.g. crack pattern) and external (e.g. deflection)

responses of the beam at intermediate stages and at the conclusion of thermal loading.
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sym. . - typel
385 | P
ype3
60 — ;typﬁ
167%7 1887 » 1887 4.I|}.67 |1 65 x
305
Figure 5.9 Numerical test problem 3
Material properties of concrete
fL" f;y e; EC a c
(MPa) (MPa) ("107%) (MPa) (C10°°/°C)
24.1 1.88 2.00 24100 9.0
Material properties of reinforcement
f A, E E
Type s fy fu s sh esh a s
(mm) mm?* (MPa) | (MPa) | (MPa) | (MPa) | ("107°) | (" 10°/°C)
1 13 253 345 700 | 200000 | 2000 5 11.5
2 75 | r =0.099% | 325 600 | 200000 | 2000 5 -
3 29 1282 555 900 | 200000 | 2000 5 11.5

Table 5.4 Material details in Problem 3

Computational models:
As both the structural and loading conditions are symmetrical about the mid-span, only one
half of the beam needs to be modeled. Within the model shown in Fig. 5.10, nodes along
the symmetrical line are restrained from displacements in the longitudinal direction, and
the node at the support is restrained in the transverse direction. While the concrete is
modeled by rectangular elements, truss bar elements are used for longitudinal reinforcing
bars. All this structural information is prescribed through a structure input file, one of three

primary kinds of files from which VecTor2 reads input information.
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Figure 5.10 The finite element model for Problem 3

The model will be analyzed through 54 time steps of 600s duration (9 hours in total), with
a value of 0.5 for time stepping factor » and a maximum of 100 iterations allowed at each
time step. In VecTor2, time steps proceed through an accumulation regime of the load
stage defined in the job input file. For the current case, there are 54 load stages with the
load increment of 600s. VecTor2 defines various types of thermal loads by prescribing the
entry fields of Nodal Temperature Loads in the /oad input file, as provided in Table 5.5.
The different fire loads provided are not intended to accurately simulate the fire in reality,

but rather to illustrate some possible nodal temperature loads.

While the various thermal loads tested are plotted in Fig. 5.11, listed in Appendix B are the
aforementioned VecTor2’s input files of this example. Except for the particular thermal
load file, all remaining files (job and structure files) are exactly same for all tests of

thermal loads.

Results and discussion:
From the analyses with the various thermal loads, some results and discussion are provided
below. For the purpose of visual presentation, the software Augustus© is used to represent

the output files from VecTor2 analyses.
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Load Entry Fields in Load File Load
Type
P Node | Type | Tml | Tpl | Tm2 | Tp2 | Tm3 | Tp3 Plots
A
T Steady-State
1 + 1 + Constant Tpl
t
AT
Three-Key-Node Linear Model
2 + 2 + + + + + + (Tm2,Tp2) Constant
(Tml1,T,
(Tm3,Tp3)
t
A
Compartment Simplified Fire Model
Horizontal ——  Symmerrical
growth i
(Tm2,Tp2)
3 + 3 L N =(3h,1064C)
full development
S (Tm1,Tpl)
7 =(30s,255C) t
ASTM-E119 Fire Model
4 | + | 4
T=20+750(1- ¢ 3'79553‘/?) +170.414t
t
ISO-834 Fire Model
5 + 5
T =20 +345log,( (480t +1)
t
1. “+”indicates the field that is used in load definition;
2. Load types 2-5 are transient analyses while type 1 is steady-state one.
Notes: 3. Full development curve in load type 3 is based on ASTM-E119 during the range of
' 255C-1064C; and the decay curve is symmetrical with development one about the peak
point.
4. Standard fire curves in load types 4 and 5 have no ends.

Table 5.5 Various fire models in VecTor2
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Figure 5.11 Various thermal loads tested in Problem 3
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1. Load type 1: steady-state model

Reaction force at support (kN)

e P e O S, ., U
8.0

6.0
4.0 Load Type 1
2.0

0.0 1.0 20 30 40 50 60 70 80
Time (h)

Figure 5.12 Reaction forces at support

Since the beam is statically determinate, no restrained force will result from thermal
gradients, regardless of the fire load type. As a result, the reaction force at support in the

above figure stays fairly constant, corresponding to the gravity load:
24007 1077 9.8 (305" 560" 2053.5)" 10"° =8.25kN

For the deflection in the steady-state condition, due to the linear (in theory) thermal strain,
the curvature is constant throughout the height of the beam, being equal to:

f =a,DI/h .1

where @, = /" a,,, =2.035118" 9.0" 10° and thermal gradient is equal to 1000°C..

Then, one can use first moment area theorem to calculate the deflection from the curvature

diagram as follows:

a,DTL* 97 10°" 2.035118” 1000" (2053.5" 2)*
8h 8" 560

=68.96mm (5.2)

mid —

DT —f'£'£:
2 4
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For the deflection due to the gravity load (treaded as a point load at the centroid of the

beam), one can calculate the deflection by formula as follows:

WL (24007 9.8 0.305” 0.56" 4.107)" (4.107)° _
™ 48E T 48" (24100 10°)” (0.305" 0.56° /12)

0.22mm (5.3)

It is observed that the values calculated above (totally 68.96 +0.22 = 69.2mm due to both
thermal and gravity loads) are very close to the results obtained from VecTor2 (67.9mm),

shown in Fig. 5.13 (load type 1) below. The difference is likely due to a, <a_, causing

some internal restraint.

2. Load type 2: three-key-node linear model

During the test of load type 2, the deflection-time curve given in Fig. 5.13 (load type 2)
presents a similar overall trend as thermal gradient imposed while there is a lag in time
observed between the turning points in plots of the imposed thermal gradient and the
deflection curve. This lag is thought to be due to that in the plot of temperature load, the
thermal gradient after the turning point is still very high and keeps contributing to the
increase of the deflection until a lower stage is reached where the imposed temperature
gradient is not sufficient to increase the deflection. This phenomenon is understandable if
one considers the case where the transient constant temperature load is imposed but the

deflection is increasing as time proceeds.

Also, the net strain (total strain minus the thermal strain) in the concrete at the location of
top mid-span of the beam is shown in Fig. 5.14. The strain approaches to zero at the

conclusion of the test when the thermal gradient approaching linear steady-state condition.
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00 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
Time during analysis (h) Time during analysis (h)
-10.0 30
—20.0 Load Type 1 6.0
Load Type 2
--30.0 -9.04
-12.0
-40.0
-15.0
-50.0
-18.0 .
-60.0| Deflection (mm) Deflection (mm)
A -
0.0 1.0 2.0 3.0 4.0 5.0 05 1.0 15 20 25 30 35
| Time during analysis (h) * Time during analysis (h‘)
-4.0
-3.0
80 Load Type 3
-6.0
-12.0
9.0 S~ ™\ . Load Type 4
-16.0 N
12.0 I
-20.0 o Load Type 5 N
Deflection (mm) S
N\
-15.0 1 Deflection (mm)

Figure 5.13 Deflection-time curves at beam’s mid-span in Problem 3

7.0 Time during analysis (h)

o 1.0 20 3.0 40 50 60
- Time (
-0.
-0.
-0.
Net strain

Figure 5.14 Net strains at top mid-span in the test of load type 2
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3. Load type 3: compartment fire model

In the deflection curve given in Fig. 5.13 (load type 3), the expected phenomenon of a
similar trend as the thermal gradient does not occur in the test of load type 3. It is likely

that the structure failed at about 5 hours, when the thermal load is still very high (over

900°C ), and hence deflections increase further. In fact, as shown by Augustus, the

stiffness in the bottom steel bars is completely lost due to high temperatures there (over

1100°C). The crack width at this moment is around 10 mm. The strain in the stirrup
around the left corner is also quite high (around 5%, as shown in Fig. 5.15), which causes

the stress in the stirrups to go well beyond the yield stress.

48 0 Net strain (mm/m)

40.0
32.0
24.0
16.0

8.0

0.0

Figure 5.15 Net strains in stirrups in the test of load type 3
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4. Load types 4 and 5: standard fire curves

The downward deflections obtained at the center of the beam for both load types 4 and 5
are shown in Fig. 5.13 (load types 4 and 5). They are very close to each other due to both
fire models (in terms of thermal gradients imposed) being very similar. Also, the program
stops further calculations at about 3.67 hours when the stiffness of steel bars is lost in the
bottom cracked concrete region, which produces a structural failure mechanism. The crack
width at that time is also over 10 mm and the stress in the stirrups is well beyond the yield

stress, as shown in Fig. 5.16.

Average stress in stirrups (MPa)
360.

300.

240.

180.

120.

60.
Time (h)

0.0 05 1.0 15 20 25 30 35

Figure 5.16 Average stresses in stirrups in the test of load type 4

During analyses, with the variation of thermal loads, the beam’s crack development

changes at different load stages (i.e. time). Although the deformed shapes and crack
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patterns are available for each load stage, the one with the maximum crack width on the
control chart in Augustus is chosen and shown in Fig. 5.17 for load types 3, 4 and 5. It is
observed that they are slightly different, which is thought to be due to all of them occurring
at very early load stages (numbers can be found in Fig. 5.17), where the thermal gradients
of all loads are not much different from one another as given from Fig. 5.11.

Control Chart
18000

. ul
P LT o S o et ] g

Control Chart

o ] o .S . -

Control Chart

Figure 5.17 Crack patterns with control plots from the Augustus

5. Extended to the one-way slab: a restrained structure
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By simply modifying the restraint system on the model, one can test the same thermal
loads on a one-way slab, with the left end treated as a continuous beam in this case. This
test is not intended to really analyze the behavior of the slab with an appropriate dimension
but to see the characteristic of the response of an indeterminate structure to the thermal

loads. The load type 2 is selected in this test.

The deflection-time curve obtained at the center of the slab is given in Fig. 5.18. It can be
seen that it again presents the similar overall trend as the imposed temperature load plotted
in Fig. 3.11. The sharp fluctuations in the curve are found to be due to severe cracking
progression within the load stage. As a result, a smaller load incremental (i.e. time stepping
size) is required to produce a smoother curve. That actually proves the fact that the high-

nonlinear transient heat analysis is computationally intensive.

6.0 7.0 80 90

Time during analysis (h)

Deflection (mm)

Figure 5.18 Deflection at the center of the slab tested
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5.4 Problem 4: A Real Test

This problem is modeled after a specimen tested by Vecchio and Sato [32] at the facilities
of Ontario Hydro over 15 years ago. Unlike the original experimental program which
covered a diverse range of thermal and mechanical loading conditions and was used to
calibrate and validate their proposed theoretical formulations, this problem examines only

three models to test the overall performance of the modified VecTor2.

Problem description:

The test speciman is, overall, a reinforced concrete portal frame consisting of two columns
and one beam. The schematic representation of the test model is shown in Fig. 5.19, with
specimen details and material properties given in Table 5.6. Two side panels span the
interior of the frame to form a tank-like structure, with a flexible silicone water-stop in the
gaps between the panels and the frame allowing the frame to be structurally independent of
the panels. Water placed in the tank then serves to apply thermal loads, by means of an

immersed heater.

Specimen detals’ Concreteg\/[aterial propert;esinforcement
b gnmlg o fo (MPa) 424 | f, (MPa)| 448
/3; (n({r)n) 4#2505M2 f. (MPa)  3.12 £, (MPa)| 710
3 (n({r)n) WM IR (MPa) 58980 | B (MPa) | 217000
/:V (rfl_r)n) #1121(;/[ a, (I°"C) 9.86"10° | a, (/°C)|124710°

1: Reinforcement in both columns and the beam is identical;
2: Area of #10M is 100 mm?; #20M is 300 mm”;
3: Thermal diffusivity is taken as the measured value 0.774mm’ /s .

Table 5.6 Specimen details and material properties in Problem 3
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Figure 5.19 Numerical test problem 4 (From reference [32])

&9



CHAPTER 5 NUMERICAL CORROBORATION

Computational model:

The computational model is shown in Fig. 5.20 (d), in which only half of the structure is

modeled due to symmetry.

Three distinct types of tests will be considered. The Type I test (Fig. 5.20 (a)) is conducted
with the test model in an unrestrained mode. The temperature load Type I will be
maintained for a long period (10 hours) so that both transient and final steady-state
conditions can be observed. In the Type II test (Fig. 5.20 (b)), the tie-rod is engaged to
render the structure one-degree statically indeterminate. Thus, with the columns restrained
from outward deflection by the tie-rod, restraint forces are induced in the tie-rod and hence
in the frame. The temperature load for the Type II test will be applied about for 10 hours to
disclose the internal crack pattern developed and external restraint forces produced. In the
Type III test (Fig. 5.20 (c)), the model is in the unrestrained configuration while a
simultaneously acting mechanical load is applied laterally to the column at a location 800
mm above the bottom of the beam. The temperature load Type III will be applied until the
ultimate capacity of the structure is attained under the monotonically increased (from zero)

mechanical loads.

Instead of focusing on thermal “shock” tests, as in the original experimental program, the
thermal loads employed in this problem consist of different increase amounts at varous

rates for each test type. The temperature on faces not exposed to water is maintained at the

room temperature 15°C . A plot of thermal loads is given in Fig. 5.21.

All VecTor2 input files used in this problem are listed in Appendix C.
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Figure 5.20 Computational models in Problem 4

Results and discussion:

The results obtained from analyses are discussed below, with different focuses for each

type of the test.
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Figure 5.21 Thermal loads tested in Problem 4

1. Type I test:

During Type I testing, highly nonlinear transient thermal gradients are produced within the
members in the beginning. In time, they approach a steady-state condition, characterized
by a fairly linear gradient thought the depth of the section. The imposed thermal loads
result in an upward deflection of the beam relative to its ends and outward deflections of
the column relative to its base. The vertical deflection occurring at the mid-span of the
beam and the lateral deflection at the top of the column are shown in Fig. 5.22. Both of
them are thought to match the trend of the thermal load applied, increasing linearly in the
beginning and becoming constant in the end. The deflection at beam’s mid-span increases
from 2.58 mm to 2.68 mm and the one at the column’s top increases from 14.64 mm to
15.43 mm during the time range of 4-10 hours. That indicates the heat flow approaches the

steady-state condition under which the deflection will stay unchanged in theory.

Primary thermal stresses are induced in the test model, mainly due to nonlinearity in the

thermal gradients shortly after the thermal loads are applied (also from differences in
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thermal expansion coefficients between concrete and reinforcement). However, this stress

diminishes as the thermal gradients approach the linear steady-state condition. This

phenomenon is well presented by Fig. 5.22, in which both concrete’s shear and normal

stresses within the outer-corner element approach to zero at conclusion of the test.

Deflection (mm)

Stress (MPa)

i\
241" : . - 0.5
1\ Upward deflection at the mid-span of the beam
P\
\
2.0
) 04
| \
1.6—:
I 0.3
I
1.2—I
: 0.2
0'87: Shear stress in concrete
| \_—"‘ ‘~~_\—~___ L
0.41 =—=-=a4 9-1
: Time during analysis (h)
3.2 4.8 6.5 8.0 9.8
0. SR RTT SRR .0.0
"""""""""""""""""" N (;l:mal stress in concrete :
30 --0.1
64 --0.2
--0.3
-9.0 :
e . T '0.4
2.4 i Outward deflection at the top of the column

-15.0

Figure 5.22 Deflections and stresses in Type | test
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2. Type Il test:

In this test, all three levels of temperature loading are applied on the model. As shown in
Fig. 5.23, the restraint forces induced in the model present a similar style of overall trend
for all types of load. A higher temperature gradient seems to have a faster increase in the
initial stages, while the peak value appears to be lower. Also, the time when peak value of
restraint forces occurs are not corresponding to the ones of thermal gradients. In this aspect,
a higher temperature load appears to have a further gap between these two peak times.
After peaking, the forces then have a large drop. It is likely due to the sudden severe
cracking that develops during these times, which renders the structure less stiff. Actually, a
lower temperature load ‘postpones’ the occurring and progression of severe cracking.
Consequently, the restraint force can develop a longer time, during which the internal
forces can be redistributed better. After dropping, the forces increase marginally (due to
increase of temperature loading) until the temperature gradients within structure achieve
the highest state. Thereafter, the forces remain essentially constant over the remainder of
the test. For example, in the case with load type B2T, a severe cracking progression is
observed at the location about 500 mm from the base of the column, as shown in Fig. 5.24.

The concrete stress at this location goes up to the tensile strength of the concrete.

In addition to crack conditions, it is found that the restraint force induced is also sensitive
to yield conditions within the structure. Within the test of the thermal load Type I on the
model, a yield stress in reinforcement is observed during the drop period, at the location
around the cracking shown in Fig. 5.25. The yielding of reinforcement can significantly
reduce the structure’s stiffness, and in turn reduce the restraint force in the statically

indeterminate structure.
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Figure 5.23 Restraint force induced at engaged tie-rods in Type Il test

Concrete tensile stress (MPa) s )

2.5
2.0
1.5 T
1.0
Severe EEisc N R—
0.5 cracking §
K\ e
Time during analysis (h)
0. t t t t } ]
1.5 3.0 4.5 6.5 8.0 9.0

Figure 5.24 Concrete stresses and crack pattern in Type Il test
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Figure 5.25 Yield stress in reinforcement during Type Il test
3. Type III test:

In Type III testing, in addition to the temperature loading, the lateral load applied is

monotonically increased until the ultimate capacity of the model is exceeded.

During the test of temperature load Type III on the model, as shown in Fig. 5.26 (type
“3R+3T”) the load-deformation curve of the structure is linear until the bottom
reinforcement in the beam yields at about 1.0 hours. Thereafter, response is essential
plastic with a limited increase in the load capacity, mainly due to strain hardening. A
response of the model without the thermal load is also plotted in Fig. 5.26, denoted by type
“3R+0T”. From the comparison, the presence of a thermal load in the case of test model

does not appear to reduce the ultimate capacity of the structure very much. However, if the
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thermal load is sufficiently high it can crack the structure when the mechanical load is still
at a low level. In some cases, the presence of the thermal load may yield the structure
much earlier than the case without thermal loads. In addition, a highly nonlinear thermal
gradient will induce primary stresses within the structure and reduce the stiffness and

strength of the structure to a significant degree.

Noticing that the structure is statically determinate and no force redistribution will then be
present, extended tests on restrained model in Type II test are also performed, with and
without the thermal load Type III. The load-deformation curves obtained are also plotted in

Fig. 5.26, denoted by types “2R+0T” and “2R+3T”

Through the comparisons between types “3R+3T” and “2R+3T”, it is observed that the
introduced restraint highly increases the structure’s ultimate capacity. From the
comparisons between the types “2R+1T” and “2R+0T”, it is again not found that the
presence of the thermal load (even in a high level as B1T) produces a significant influence
on the response of the statically indeterminate structure. However, the presence of thermal
loads should be always of attention since the cracking and yield of the structure are likely

sensitive to the amount of the thermal loads applied.

97



CHAPTER 5 NUMERICAL CORROBORATION

Load (kN)

280

—-—-2R0T
20 ——2R1T

2R3T

w4+ ... 3ROT

—3R3T
130 ——
80
30

40 50 60
-20
Deflection (mm)

Figure 5.26 Load-deformation curves obtained in Type Il test
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Chapter 6 Gonclusions and Further
Research Prospects

6.1 Conclusions

In this work, a 2D transient nonlinear thermal analysis capability is implemented into
program VecTor2. Models are created to account for the time-varying thermal loads and
the temperature-dependence of the various concrete and steel mechanical and thermal
properties that influence structural and thermal analyses. In addition, formulations for
considering heat-of-hydration problems and algorithms for calculating the closed-form
element stiffness for a quadrilateral element with a fully-populated material stiffness are

developed and realized.

With the results obtained from numerical corroboration testing, the developed
computational scheme and the implemented code are found to be accurate, stable and
reliable. However, considerable improvements are required before they equal the
prominence of the static and dynamic analyses within the VecTor suite of program

development and in the advanced concrete structural analysis.

6.2 Suggestions
While a wide variety of research is possible in future work, some aspects closely related to

this research are suggested below for further investigation and development.
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In the FE analysis:

For practical engineering problems, the subject of error estimation for numerical solutions
and the development of adaptive refinement procedure are central. As a nonlinear finite
element analysis facility, VecTor suite of programs have a common but challenging step to
move forward in this aspect. For all incorporated finite element calculations, including the
heat flow analysis, an error estimation process is required to assess the performance of the
current discretization and to provide quantitative description on the accuracy of the present
solution. Such a description is essential for the refinement process in which a new finite
element mesh will be generated to reduce the discretization error by increasing the number
of degrees of freedom where the previous analysis is not adequate. In order to do that, a
well designed refinement strategy is necessary to define that new spatial and/or temporal

discretization in a most economic manner.

In the heat modeling:

The computational methods have become extremely powerful and sophisticated with great
accuracy during the past few decades. However, from the point of view of overall
structural reliability, the results of sophisticated computations of structural response are
only, in the end, as good as the assumptions for the simulation or simplification of applied
loads, which includes fire. Specifically in heat modeling for concrete structures, heat-of-
hydration, thermal creep and spalling effect, and multi-phase change remain intensive
research topics though much effort was devoted in previous decades. Also, precise
knowledge of the mechanism and kinetics of the microstructure for material properties’

temperature dependency require further investigation.

100



CHAPTER 6 CONCLUSIONS AND FURTHER RESEARCH PROSPECTS

In the VecTor development:

As direct future work, heat flow analysis is required to be incorporated into three-
dimensional problems. It is imperative to implement the nonlinear transient FE thermal
analysis capacity into the entire VecTor suite of problems, such as VecTor3 for 3D solid
and other kinds of structure types. In this extension, attention must be paid to the efficiency
of the developed computationally scheme since the highly nonlinear transient analysis is
computational intensive. In addition, the window-based input and graphic-based output

facilities are also needed to facilitate user interaction and result presentation.

In experimental work:

Experimental tests are essential for the parameter collecting, formulation corroboration,
and theory validation. The setup of various heat models would require a large database to
be established. Also, results obtained from laboratory tests could uniquely verify the
developed numerical scheme. As an urgent need from the current research, hydration and
thermal creep testing as well as high-temperature material property evaluation are

exceedingly important.
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Al. JOB
* VecTor *
* JOB DATA *
* % % % % % % % % *x * %
Job Title (30 char. nex.) Al
Job File Nane ( 8 char. nax.) DAL
Dat e (30 char. nax.) : Nov 08, 2003
STRUCTURE DATA
Structure Type 2
Fil e Nane ( 8 char. nax.) . ALR
LOADI NG DATA
No. of Load Stages . 54
Starting Load Stage No. o1
Load Series ID ( 5 char. nax.) DAL
Load Fil e Nane | Factors |
Case (8 char max) Initial Fi nal LS-Inc Type Reps ClInc
1 A1T 1. 000 1. 000 600. 000 1 2 1. 000
2 AlG 1. 000 1. 000 0. 000 2 1 0. 000
3 NULL 0. 000 40. 000 0. 500 1 1 0. 000
4 NULL 0. 000 0. 000 0. 000 1 1 0. 000
5 NULL 0. 000 0. 000 0. 000 1 1 0. 000
ANALYSI S PARAMETERS
Anal ysi s Mode (1-2) : 1
Seed File Nane (8 char max) : NULL
Convergence Limt (>1.0) : 1.00001
Aver agi ng Fact or (<1.0) : 0.25
Maxi mum |t erati ons . 100
Convergence Criteria (1-5) : 2
Results Files (1-4) : 2
Qut put For mat (1-3) : 1
MATERI AL BEHAVI OUR MODELS
Concrete Conpression Base Curve (0-3) 1
Concrete Conpression Post-Peak (0-3) 1
Concrete Conpression Softening (0-8) 1
Concrete Tension Stiffening (0-5) 1
Concrete Tensi on Softening (0-3) 1
Concrete Tension Splitting (1-2) 1
Concrete Confined Strength (0-2) 1
Concrete Dilatation (0-1) 1
Concrete Cracking Criterion (0-4) 1
Concrete Crack Slip Check (0-2) 1
Concrete Crack Wdth Check (0-2) 1
Concrete Bond or Adhesion (0-4) 1
Concrete Creep and Rel axation (0-1) 1
Concrete Hysteresis (0-3) 2
Rei nf orcement Hysteresis (0-3) 1
Rei nf orcement Dowel Action (0-1) 1
Rei nf or cenment Buckl i ng (0-1) 1
El ement Strain Histories (0-1) 1
El ement Slip Distortions (0-4) 1
Strain Rate Effects (0-1) 1
Structural Danping (0-1) 1
Geonetric Nonlinearity (0-1) 1
Crack Allocation Process (0-1) 1
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AlR S2R
* VecTor 2 *
* STRUCTURE DATA =
* % % % % % % % % % % % % % % % % * %
STRUCTURAL PARAMETERS
khkkkkkkkkkkkkkkkkkkkx*%x
Structure Title (30 char. nax.) : BRESLER SCORDELI S Al
Structure File Nane ( 8 char. nax.) DAL
No. of R C. Material Types 2
No. of Steel Material Types c2
No. of Bond Material Types 0
No. of Rectangul ar El enments . 370
No. of Quadrilateral Elenents 00
No. of Triangul ar El enments 0
No. of Truss Elements © 111
No. of Linkage El enents 0
No. of Contact El enents 0
No. of Joints : 418
No. of Restraints : 33

MATERI AL SPECI FI CATI ONS

khkkkkhkhkhkhhkhkhhhkhhkhkhkxx

(A) RElI NFORCED CONCRETE

CONCRETE

MAT Ns T f'e [ f't Ec e0 Mu Cc Agg Dens Kc ] [Sx Syl

TYP # mm MPa MPa MPa me /C mm kg/nm8 m2/s mm mm
1 0 305 24.1 1.88 24100 2.00 0.15 O 15 0 0 0 0
2 1 305 24.1 1.88 24100 2.00 0.15 0 15 0 0 0 0

REI NFORCEMENT COVPONENTS
MAT SRF DIR As Db Fy Fu Es Esh esh GCs Dep
TYP TYP deg % mm MPa Mra MPa MPa me /C e
2 1 90. 0.099 7.5 325 600 200000 2000 5 O O
/
(B) STEEL
<NOTE: > TO BE USED FOR TRUSS ELEMENTS ONLY
MAT REF AREA Db Fy Fu Es Esh esh GCs Dep

TYP TYP mR mm  MPa MPa MPa MPa me /C me
1 1 1282 29 555 900 200000 2000 5 11.5E-6 O
2 1 253 13 345 700 200000 2000 5 11.5E-6 O
/

(C) BOND

<NOTE: > TO BE USED FOR EXTERI OR/ | NTERI OR BONDED ELEMENTS
MAT REF { Ao Ul u2 u3 S1 S2 S3 }/{ CPF Cmin No. HOX }
TYP TYP m*2  MPa MPa MPa mm mm mm 0-1 mm LYR 0/1
/
ELEMENT | NCI DENCES

khkkkkkkkhkkhkkhkhkkk*

(A) RECTANGULAR ELEMENTS
<<<<< FORVAT >>>>>
ELMI INCL INC2 INC3 INCA [ #ELMT d(ELMT) d(INC) ] [ #ELMI d(ELMN) d(INC) ] /

1 1 2 40 39 37 1 1 10 37 38/

/

(B) QUADRI LATERAL ELENMENTS
<<<<< FORMAT >>>>>
ELMI INCL INC2 INC3 INCA [ #ELMT d(ELMT) d(INC) ] [ #ELMI d(ELMM) d(INC) ] /
/

108



APPENDIX A VECTORZ2 INPUT FILES FOR PROBLEM 3

(C) TRI ANGULAR ELEMENTS
<<<<< FORVAT >>>>>
ELMI INCL INC2 INC3 [ #ELMT d(ELMN) d(INC)] [ #ELMT d(ELMT) d(INC) ] /
/

(D) TRUSS ELEMENTS

<<<<< FORVAT >>>>>
ELMI INCL INC2 [ #ELMI d(ELMT) d(INC)] [ #ELMI d(ELMI) d(INC) ] /
371 39 40 37 1 1/
408 77 78 37 1 1/
445 343 344 37 1 1/
/

(E) LINKAGE ELEMENTS
<<<<< FORVAT >>>>
ELMI INCL INC2 [ #ELMT d(ELMT) d(INC) ] [ #ELMT d(ELMT) d(INO) ]
/

(F) CONTACT ELEMENTS
<<<<< FORVAT >>>>
ELMI INCL INC2 INC3 INCA [ #ELMM d(ELMI) d(INC) ] [ #ELMT d(ELMI) d(INQ) ]
/

MATERI AL TYPE ASSI GNVENT
<<<<< FORMAT >>>>>
ELMI MAT ACT [ #ELMT d(ELMT)] [ #ELMT d(ELMT) ] /

1

1 1 371/
38 2 1 296 1/
33 1 1 371/
371 1 1 74 1/
445 2 1 37 1/

/
COORDI NATES
*kkkkkkkkkx
<NOTE: > UNITS: mm
<<<<< FORNMAT >>>>>
NODE X Y [ #NODES d(NODES) d(X) d(Y) ] [ #NODES d(NODES) d(X) d(Y) ] /
1 o 0. 38 1 55.5 0. 2 38 0. 65 /
77 0. 125. 38 1 555 0. 7 38 0. 55 |/
343 0. 510. 38 1 55.5 0. 2 38 0. 50. /
/
SUPPORT RESTRAI NTS
IR R E R EEEEEEEEEESE S
<NOTE: > CODE: '0' FOR NO RESTRAINT; '1' FOR RESTRAI NT
<<<<< FORMAT >>>>>
NODE X-RST Y-RST [ #NCDE d(NODE) | /
111 11 38/
38 10 11 38/
/

<NOTES: >
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AlG L2R
* * * * * * * * * * * * *
* VecTor 2 *
* LOAD DATA *
* * * % % % % % % *x *x * %
LOAD CASE PARAMETERS
kkkkkkhkkhkkkkkkkkkkkkk*x
Structure Title (30 char. nax.) . B/'S Beans
Load Case Title (30 char. nax.) : 100 kN
Load Case File Nane (8 char. nmax.) DAL
No. of Loaded Joints : 0

No. of Prescribed Support Displacenents : O
No. of Elements with Gravity Forces . 370
No. of Elements with Tenperature Change :
No. of Elements with Concrete Prestrain
No. of Elements with Ingress Pressure
No. of Nodes with Thermal Load

No. of Nodes with Lunped Masses

No. of Nodes with Inpul se Forces

Ground Accel eration Record (0-1)

[eNoloNoNoNeNe]

JO NT LOADS
<NOTE: > UNITS: KN
<<<<< FORMAT >>>>>
NODE  Fx Fy [ #NCDE d(NCDE) d(Fx) d(Fy) ] /
/
SUPPCRT DI SPLACEMENTS
IR R E R EEEEEEEEEEEESEEEE]
<NOTE: > UNITS: MM
<<<<< FORVAT >>>>>
JNT DOF DISPL [ #JNT d(JNT) ] /
/
GRAVI TY LOADS
<NOTE: > UNITS: KG M3
<<<<< FORMAT >>>>>
ELMI DENS GX GY [#ELMI d(ELMT)] [ #ELMT d(ELMD)] /
1 2400 0 1 370 1/
/
TEMPERATURE LOADS
ERE R E R RS EEEEEEEE SRS
<NOTE:> UNITS: C
<<<<< FORVAT >>>>>
ELMI  TEMP [ #ELMI d(ELMI) d(TEMP) ] [ #ELMT d(ELMT) d(TEMP) ] /

CONCRETE PRESTRAI NS
<NOTE: > UNITS: ne
<<<<< FORMAT >>>>>
ELMI  STRAIN [ #ELMI d(ELMI) d(STRAIN) ] [ #ELMI d(ELMI) d(STRAIN) ]
/

| NGRESS PRESSURES

kkkkkkkkkkkkkkkk*
<NOTE: > UNITS: MPa
<<<<< FORMAT >>>>>
ELMI PRESSURE [ #ELMI d(ELMI) d(PRS) ] [ #ELMI d(ELMT) d(PRS) ] /
/

NODAL THERVAL LQADS
<NOTE: > UNITS: Sec, Degrees C
<<<<< FORMAT >>>>>
NCDE TYPE Tnl Tpl TnR Tp2 TnB Tp3 [#NODE d(NODE)] [#NODE d( NODE) ]
/

LUMPED MASSES
kkkkkkkkkkkk*x

<NOTE: > UNITS: kg, m's
<<<<< FORMAT >>>>>
NODE DOF-X DOF-Y MASS GF-X GF-Y Vo-X Vo-Y [ #NODE d(NODE) ] /
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| MPULSE FORCES

<NOTE: > UNITS: Sec, kN
<<<<< FORMAT >>>>>
NODE DOF T1 F1 T2 F2 T3 F3 T4 F4 [ #NODE d(NCDE) ] /
/

GROUND ACCELERATI ON

IR R E R EEEEEEEEEEEEEE]
<NOTE: > UNITS: Sec, nis2
<<<<< FORMAT >>>>>
TI ME ACC- X ACC- Y
/

<NOTES: >
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AlT. L2R
* VecTor 2 *
* LOAD DATA *
* % % * % % % % % % *x * %
LCAD CASE PARAMETERS
kkkkkkkkkkkkkkkkkkk*x
Structure Title (30 char. nax.) . B/'S Beans
Load Case Title (30 char. nax.) : 100 kN
Load Case File Nane (8 char. nmax.) DAL
No. of Loaded Joints 0
No. of Prescribed Support Displacenents 0
No. of Elements with Gravity Forces 0
No. of Elements w th Tenperature Change 0
No. of Elements with Concrete Prestrain 0
No. of Elements with Ingress Pressure 0
No. of Nodes with Thermal Load 76
No. of Nodes with Lunped Masses 0
No. of Nodes with Inpul se Forces 0
Ground Accel eration Record (0-1) 0

JO NT LOADS
<NOTE: > UNITS: KN
<<<<< FORMAT >>>>>
NODE  Fx Fy [ #NODE d(NODE) d(Fx) d(Fy) ] /
/
SUPPORT DI SPLACEMENTS
IR R EEEEEEEEEEEEEESEEEE]
<NOTE: > UNITS: MM
<<<<< FORVAT >>>>>
JNT DOF DISPL [ #JNT d(JNT) ] /
!
GRAVI TY LOADS
<NOTE: > UNITS: K& M3
<<<<< FORMAT >>>>>
ELMT DENS GX GY [#ELMI d(ELMT)] [ #ELMT d(ELMN)] /
/
TEMPERATURE LOADS
ERE R E R RS EEEEEEEE SRS
<NOTE:> UNITS: C
<<<<< FORVAT >>>>>
ELMT  TEMP [ #ELMI d(ELMT) d(TEMP) ] [ #ELMI d(ELMI) d(TEMP) ] /
/
CONCRETE PRESTRAI NS
<NOTE:> UNITS: me
<<<<< FORMAT >>>>>
ELMIT STRAIN [ #ELMP d(ELMT) d(STRAIN) ] [ #ELMI d(ELMT) d(STRAIN) ]
/
| NGRESS PRESSURES
<NOTE: > UNITS: MPa
<<<<< FORMAT >>>>>
ELMI PRESSURE [ #ELMI d(ELMI) d(PRS) ] [ #ELMI d(ELMI) d(PRS) ] /
/

Type 1: Steady-State Mdel
NCDAL THERVAL LOADS
<NOTE: > UNITS: Sec, Degrees C
<<<<< FORMAT >>>>>
NODE TYPE Tml Tpl Tn2 Tp2 Tn8 Tp3 [#NODE d(NODE)] [#NCDE d( NODE)]
1 1 0 1000 43200 1000 45000 10 38 1/
381 1 100 0 43200 0 45000 O 38 1/
/
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Type 2: Three-Key-Node Linear Mbdel
NCDAL THERVAL LOADS

<NOTE: > UNITS: Sec, Degrees C

<<<<< FORMAT >>>>>

NODE TYPE Tnl Tpl TnR Tp2 TnB Tp3 [#NODE d(NODE)] [#NODE d(NODE)] /
1 2 2400 900 14400 1000 28800 100 38 1/

381 2 2400 0 14400 0 28800 O 38 1/

/

Type 3: Conpartnment Sinplified Fire Mdel
NODAL THERMAL LOADS
XKk hkhkhhhhkhkkkkkkkkkkx
<NOTE: > UNITS: Sec, Degrees C
<<<<< FORVAT >>>>>
NODE TYPE Tmil Tpl TnR Tp2 TnB Tp3 [#NODE d(NODE)] [#NODE d(NODE)] /
1 3 30 255 10800 1064 32400 1 38 1/
381 2 100 0 10800 0 32400 O 38 1/
/

Type 4. ASTM E119 Fire Model

NODAL THERMAL LQADS
<NOTE: > UNITS: Sec, Degrees C
<<<<< FORNMAT >>>>>
NODE TYPE Tnl Tpl TnR Tp2 TnB Tp3 [#NODE d(NODE)] [#NODE d(NODE)] /
1 4 100 255 10800 1064 4900 10 38 1/
381 2 100 0 10800 0 32400 O 38 1/

/
Type 5: 1SO 834 Fire Model
NODAL THERMAL LQADS

<NOTE: > UNITS: Sec, Degrees C

<<<<< FORMAT >>>>>

NODE TYPE Tnl Tpl TnR2 Tp2 TnB Tp3 [#NODE d(NODE)] [#NODE d(NODE)] /
1 5 100 255 10800 1064 32400 10 38 1/

381 2 100 0 10800 0 32400 O 38 1/

/

LUVPED MASSES
kkkkkkkkkkkk*%x
<NOTE: > UNITS: kg, nl's
<<<<< FORMAT >>>>>
NODE DOF-X DOF-Y MASS GF-X GF-Y Vo-X Vo-Y [ #NCDE d(NODE) | /
/
| MPULSE FORCES
*kkkkkkkkkkkkk*x
<NOTE: > UNITS:  Sec, kN
<<<<< FORNMAT >>>>>
NODE DOF T1 F1 T2 F2 T3 F3 T4 F4 [ #NODE d(NODE) | /
/
GROUND ACCELERATI ON
<NOTE: > UNITS: Sec, nis2
<<<<< FORMAT >>>>>
TIME ACCX ACCY
/

<NOTES: >
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VECTOR-1.J0B

* VecTor *
* JOB DATA *
* % * % % % % *x % *x * %
Job Title (30 char. nax.) Frame
Job File Nane ( 8 char. nax.) Fl
Dat e (30 char. nax.) Nov 13, 2003
STRUCTURE DATA
Structure Type 2
Fil e Nane ( 8 char. nax.) . FIR
LOADI NG DATA
No. of Load Stages ;60
Starting Load Stage No. o1
Load Series ID ( 5 char. nmax.) : Fl
Load Fil e Nane | Factors |
Case (8 char max) Initial Fi nal LS-Inc Type Reps CInc
1 F1T 1. 000 1. 000 600. 0 1 2 1. 000
2 FG 1. 000 1. 000 0. 000 2 1 0. 000
3 NULL 0. 000 40. 000 0. 500 1 1 0. 000
4 NULL 0. 000 0. 000 0. 000 1 1 0. 000
5 NULL 0. 000 0. 000 0. 000 1 1 0. 000
ANALYSI S PARAMETERS
Anal ysi s Mde (1-2) : 1
Seed File Nane (8 char max) : NULL
Convergence Limt (>1.0) : 1.00001
Aver agi ng Factor (<1.0) : 0.5
Maxi mum |t erati ons 50
Convergence Criteria (1-5) 2
Results Files (1-4) 2
Qut put For mat (1-3) 1
MATERI AL BEHAVI OUR MODELS
Concrete Conpression Base Curve (0-3) 1
Concrete Conpression Post - Peak (0-3) 1
Concrete Conpression Softening (0-8) 1
Concrete Tension Stiffening (0-5) 1
Concrete Tensi on Softening (0-3) 1
Concrete Tension Splitting (1-2) 1
Concrete Confined Strength (0-2) 1
Concrete Dilatation (0-1) 1
Concrete Cracking Criterion (0-4) 1
Concrete Crack Slip Check (0-2) 1
Concrete Crack Wdth Check (0-2) 1
Concrete Bond or Adhesion (0-4) 1
Concrete Creep and Rel axation (0-1) 1
Concrete Hysteresis (0-3) 2
Rei nf orcenent Hysteresis (0-3) 1
Rei nf orcement Dowel Action (0-1) 1
Rei nf or cement Buckl i ng (0-1) 1
El emrent Strain Histories (0-1) 1
El enent Slip Distortions (0-4) 1
Strain Rate Effects (0-1) 1
Structural Danpi ng (0-1) 1
Geonetric Nonlinearity (0-1) 1
Crack Allocation Process (0-1) 1

<NOTES: >
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VECTOR-11.J0B

* VecTor *
* JOB DATA *

Job Title (30 char. nax.) Fr ame

Job File Nane ( 8 char. nax.) Fl

Dat e (30 char. nax.) Nov 13, 2003

STRUCTURE DATA

Structure Type 2

Fil e Nane ( 8 char. nax.) : F2R

LOADI NG DATA

No. of Load Stages : 60

Starting Load Stage No. o1

Load Series ID ( 5 char. nmax.) : FlLI

Load Fil e Nane | Factors |

Case (8 char max) Initial Fi nal LS-Inc Type Reps ClInc
1 F2T 1. 000 1. 000 600. 0 1 2 1. 000
2 FG 1. 000 1. 000 0. 000 2 1 0. 000
3 NULL 0. 000 40. 000 0. 500 1 1 0. 000
4 NULL 0. 000 0. 000 0. 000 1 1 0. 000
5 NULL 0. 000 0. 000 0. 000 1 1 0. 000

ANALYSI S PARAMETERS

Anal ysi s Mode (1-2) : 1

Seed File Nane (8 char max) : NULL

Convergence Limt (>1.0) : 1.00001

Aver agi ng Fact or (<1.0) : 0.5

Maxi mum |t erati ons : 50

Convergence Criteria (1-5) : 2

Results Files (1-4) : 2

Qut put For mat (1-3) 1

MATERI AL BEHAVI OUR MODELS

Concrete Conpression Base Curve (0-3) 1

Concrete Conpression Post-Peak (0-3) 1

Concrete Conpression Softening (0-8) 1

Concrete Tension Stiffening (0-5) 1

Concrete Tensi on Softening (0-3) 1

Concrete Tension Splitting (1-2) 1

Concrete Confined Strength (0-2) 1

Concrete Dilatation (0-1) 1

Concrete Cracking Criterion (0-4) 1

Concrete Crack Slip Check (0-2) 1

Concrete Crack Wdth Check (0-2) 1

Concrete Bond or Adhesion (0-4) 1

Concrete Creep and Rel axation (0-1) 1

Concrete Hysteresis (0-3) 2

Rei nf orcement Hysteresis (0-3) 1

Rei nf orcement Dowel Action (0-1) 1

Rei nf or cenment Buckl i ng (0-1) 1

El emrent Strain Histories (0-1) 1

El ement Slip Distortions (0-4) 1

Strain Rate Effects (0-1) 1

Structural Danping (0-1) 1

Geonetric Nonlinearity (0-1) 1

Crack Allocation Process (0-1) 1

<NOTES: >
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VECTOR-111.J0B
* VecTor *
* JOB DATA *

Job Title (30 char. nax.) Fr ame

Job File Nane ( 8 char. nax.) FlLILI

Dat e (30 char. nax.) Nov 13, 2003

STRUCTURE DATA

Structure Type 2

Fil e Nane ( 8 char. nax.) : F3R

LOADI NG DATA

No. of Load Stages : 60

Starting Load Stage No. o1

Load Series ID ( 5 char. nax.) o FLLI

Load Fil e Nane | Factors |

Case (8 char max) Initial Fi nal LS-Inc Type Reps ClInc
1 F3T 1. 000 1. 000 600. 0 1 2 1. 000
2 FD 0. 000 60. 00 1. 000 1 1 0. 000
3 NULL 0. 000 40. 000 1. 000 1 1 0. 000
4 NULL 0. 000 0. 000 0. 000 1 1 0. 000
5 NULL 0. 000 0. 000 0. 000 1 1 0. 000

ANALYSI S PARAMETERS

Anal ysi s Mode (1-2) : 1

Seed File Nane (8 char max) : NULL

Convergence Limt (>1.0) : 1.00001

Aver agi ng Fact or (<1.0) : 0.5

Maxi mum | t erati ons . 50

Convergence Criteria (1-5) : 2

Results Files (1-4) : 2

Qut put For nat (1-3) 1

MATERI AL BEHAVI QUR MODELS

Concrete Conpression Base Curve (0-3) 1

Concrete Conpression Post-Peak (0-3) 1

Concrete Conpression Softening (0-8) 1

Concrete Tension Stiffening (0-5) 1

Concrete Tensi on Softening (0-3) 1

Concrete Tension Splitting (1-2) 1

Concrete Confined Strength (0-2) 1

Concrete Dilatation (0-1) 1

Concrete Cracking Criterion (0-4) 1

Concrete Crack Slip Check (0-2) 1

Concrete Crack Wdth Check (0-2) 1

Concrete Bond or Adhesion (0-4) 1

Concrete Creep and Rel axation (0-1) 1

Concrete Hysteresis (0-3) 2

Rei nf orcement Hysteresis (0-3) 1

Rei nf orcenent Dowel Action (0-1) 1

Rei nf or cenment Buckl i ng (0-1) 1

El ement Strain Histories (0-1) 1

El ement Slip Distortions (0-4) 1

Strain Rate Effects (0-1) 1

Structural Danping (0-1) 1

Geonetric Nonlinearity (0-1) 1

Crack Allocation Process (0-1) 1

<NOTES: >
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B1T. L2R
* * * * * * * * * * * * *
* VecTor 2 *
* LOAD DATA *
* * % % % % % % % % *x * %

LCAD CASE PARAMETERS
kkkkkkkkkkkkkkkkkkk*x

Structure Title (30 char. nax.) : frane

Load Case Title (30 char. nax.) : tenp

Load Case File Nane (8 char. nax.) o F1T

No. of Loaded Joints : 0

No. of Prescribed Support Displacenents : O

No. of Elements with Gravity Forces 0

No. of Elements w th Tenperature Change 0

No. of Elements with Concrete Prestrain 0

No. of Elements with Ingress Pressure 0

No. of Nodes with Thermal Load 268

No. of Nodes with Lunped Masses 0

No. of Nodes with Inpul se Forces 0

Ground Accel eration Record (0-1) 0

JO NT LOADS
<NOTE: > UNITS: KN
<<<<< FORMAT >>>>>
NODE  Fx Fy [ #NCDE d(NODE) d(Fx) d(Fy) ] /
/

SUPPCRT DI SPLACEMENTS

IR R EEEEEEEEEEEEEESEEEE]
<NOTE: > UNITS: MM
<<<<< FORVAT >>>>>
JNT DOF DISPL [ #JNT d(JNT) ] /
/

GRAVI TY LOADS

<NOTE: > UNITS: KG M3
<<<<< FORMAT >>>>>
ELMI DENS GX GY [#ELMT d(ELMT)] [ #ELMT d(ELMD)] /

TEMPERATURE LOADS
ERE R R R RS EEEEEEEE SRS

<NOTE:> UNITS: C

<<<<< FORNMAT >>>>>

ELMI  TEMP [ #ELMI d(ELMI) d(TEMP) ] [ #ELMT d(ELMT) d(TEMP) ] /

CONCRETE PRESTRAI NS
<NOTE: > UNITS: nme
<<<<< FORMAT >>>>>
ELMI STRAIN [ #ELMI d(ELMI) d(STRAIN) ] [ #ELMI d(ELMI) d(STRAIN) ]
/
| NGRESS PRESSURES
<NOTE: > UNITS: MPa
<<<<< FORMAT >>>>>
ELMI PRESSURE [ #ELMI d(ELMI) d(PRS) ] [ #ELMI d(ELMT) d(PRS) ] /
/
NODAL THERVAL LQADS
kkkkkkkkkkkkkkkkkk*x
<NOTE: > UNITS: Sec, Degrees C
<<<<< FORMAT >>>>>
NCDE TYPE Tnl Tpl TnR Tp2 TnB Tp3 [#NODE d(NODE)] [#NODE d( NODE) ]
521 2 1 15 7200 95 28800 95 41 1 /
572 2 1 15 7200 95 28800 95 64 11 /
1276 2 1 15 7200 15 28800 15 10 11 /
1366 2 1 15 7200 15 28800 15 9 1 /
562 2 1 15 7200 15 28800 15 74 11 /
103 2 1 15 7200 15 28800 15 9 51 /
2 21 15 7200 15 28800 15 1 1 /
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121 15 7200 15 28800 15 51 2 /
102 2 1 15 7200 15 28800 15 9 51 /
/

LUVPED MASSES

kkkkkhkkkkkkkkx
<NOTE: > UNITS: kg, nis
<<<<< FORMAT >>>>>
NODE DOF-X DOF-Y MASS G- X G--Y Vo-X Vo-Y [ #NODE d(NODE) ] /
/

| MPULSE FORCES
<NOTE: > UNITS: Sec, kN
<<<<< FORMAT >>>>>
NODE DOF T1 F1 T2 F2 T3 F3 T4 F4 [ #NODE d(NCDE) ] /
/

GROUND ACCELERATI ON

<NOTE: > UNITS: Sec, nis2
<<<<< FORMAT >>>>>
TI ME ACC- X ACC- Y
/

<NOTES: >
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B2T. L2R
* * * * * * * * * * * * *
* VecTor 2 *
* LOAD DATA *
* % % * % % % % % % *x * %

LCAD CASE PARAMETERS
kkkkkkhkkkkkkkkkkkkkk*x

Structure Title (30 char. nax.) : frane

Load Case Title (30 char. nex.) : tenp

Load Case File Nane (8 char. nax.) o F2T

No. of Loaded Joints : 0

No. of Prescribed Support Displacenents : O

No. of Elements with Gravity Forces 0

No. of Elements w th Tenperature Change 0

No. of Elements with Concrete Prestrain 0

No. of Elements with Ingress Pressure 0

No. of Nodes with Thermal Load 268

No. of Nodes with Lunped Masses 0

No. of Nodes with Inpul se Forces 0

Ground Accel eration Record (0-1) 0

JO NT LOADS
<NOTE: > UNITS: KN
<<<<< FORMAT >>>>>
NODE  Fx Fy [ #NCDE d(NODE) d(Fx) d(Fy) ] /
/

SUPPCRT DI SPLACEMENTS

IR R EEEEEEEEEEEEEESEEEE]
<NOTE: > UNITS: MM
<<<<< FORVAT >>>>>
JNT DOF DISPL [ #JNT d(JNT) ] /
/

GRAVI TY LOADS

<NOTE: > UNITS: KG M3
<<<<< FORMAT >>>>>
ELMI DENS GX GY [#ELMT d(ELMT)] [ #ELMT d(ELMD)] /

TEMPERATURE LOADS
ERE R R R RS EEEEEEEE SRS

<NOTE:> UNITS: C

<<<<< FORNMAT >>>>>

ELMI  TEMP [ #ELMI d(ELMI) d(TEMP) ] [ #ELMT d(ELMT) d(TEMP) ] /

CONCRETE PRESTRAI NS
<NOTE: > UNITS: nme
<<<<< FORMAT >>>>>
ELMI STRAIN [ #ELMI d(ELMI) d(STRAIN) ] [ #ELMIr d(ELMI) d(STRAIN) ]
/
| NGRESS PRESSURES
<NOTE: > UNITS: MPa
<<<<< FORMAT >>>>>
ELMI PRESSURE [ #ELMI d(ELMI) d(PRS) ] [ #ELMI d(ELMT) d(PRS) ] /
/
NODAL THERVAL LQADS
kkkkkkkkkkkkkkkkkk*x
<NOTE: > UNITS: Sec, Degrees C
<<<<< FORMAT >>>>>
NCDE TYPE Tnl Tpl TnR Tp2 TnB Tp3 [#NODE d(NODE)] [#NODE d( NODE) ]
521 2 1 15 10800 45 28800 45 41 1 /
572 2 1 15 10800 45 28800 45 64 11 /
1276 2 1 15 7200 15 28800 15 10 11 /
1366 2 1 15 7200 15 28800 15 9 1 /
562 2 1 15 7200 15 28800 15 74 11 /
103 2 1 15 7200 15 28800 15 9 51 /
2 21 15 7200 15 28800 15 1 1 /
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121 15 7200 15 28800 15 51 2 /
102 2 1 15 7200 15 28800 15 9 51 /
/

LUVPED MASSES

kkkkkhkkkkkkkkx
<NOTE: > UNITS: kg, nis
<<<<< FORMAT >>>>>
NODE DOF-X DOF-Y MASS G- X G--Y Vo-X Vo-Y [ #NODE d(NODE) ] /
/

| MPULSE FORCES
<NOTE: > UNITS: Sec, kN
<<<<< FORMAT >>>>>
NODE DOF T1 F1 T2 F2 T3 F3 T4 F4 [ #NODE d(NCDE) ] /
/

GROUND ACCELERATI ON

<NOTE: > UNITS: Sec, nis2
<<<<< FORMAT >>>>>
TI ME ACC- X ACC- Y
/

<NOTES: >
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B3T. L2R
* * * * * * * * * * * * *
* VecTor 2 *
* LOAD DATA *
* % % * % % % % % % *x * %

LCAD CASE PARAMETERS
kkkkkkhkkkkkkkkkkkkkk*x

Structure Title (30 char. nax.) : frane

Load Case Title (30 char. nex.) : tenp

Load Case File Nane (8 char. nax.) . F3T

No. of Loaded Joints : 0

No. of Prescribed Support Displacenents : O

No. of Elements with Gravity Forces 0

No. of Elements w th Tenperature Change 0

No. of Elements with Concrete Prestrain 0

No. of Elements with Ingress Pressure 0

No. of Nodes with Thermal Load 268

No. of Nodes with Lunped Masses 0

No. of Nodes with Inpul se Forces 0

Ground Accel eration Record (0-1) 0

JO NT LOADS
<NOTE: > UNITS: KN
<<<<< FORMAT >>>>>
NODE  Fx Fy [ #NCDE d(NODE) d(Fx) d(Fy) ] /
/

SUPPCRT DI SPLACEMENTS

IR R EEEEEEEEEEEEEESEEEE]
<NOTE: > UNITS: MM
<<<<< FORVAT >>>>>
JNT DOF DISPL [ #JNT d(JNT) ] /
/

GRAVI TY LOADS

<NOTE: > UNITS: KG M3
<<<<< FORMAT >>>>>
ELMI DENS GX GY [#ELMT d(ELMT)] [ #ELMT d(ELMT)] /

TEMPERATURE LOADS
ERE R R R RS EEEEEEEE SRS

<NOTE:> UNITS: C

<<<<< FORNMAT >>>>>

ELMI  TEMP [ #ELMI d(ELMI) d(TEMP) ] [ #ELMT d(ELMT) d(TEMP) ] /

CONCRETE PRESTRAI NS
<NOTE: > UNITS: nme
<<<<< FORMAT >>>>>
ELMI STRAIN [ #ELMI d(ELMI) d(STRAIN) ] [ #ELMI d(ELMI) d(STRAIN) ]
/
| NGRESS PRESSURES
<NOTE: > UNITS: MPa
<<<<< FORMAT >>>>>
ELMI PRESSURE [ #ELMI d(ELMI) d(PRS) ] [ #ELMI d(ELMT) d(PRS) ] /
/
NODAL THERVAL LQADS
kkkkkkkkkkkkkkkkkk*x
<NOTE: > UNITS: Sec, Degrees C
<<<<< FORMAT >>>>>
NCDE TYPE Tnl Tpl TnR Tp2 TnB Tp3 [#NODE d(NODE)] [#NODE d( NODE) ]
521 2 1 15 14400 75 28800 75 41 1 /
572 2 1 15 14400 75 28800 75 64 11 /
1276 2 1 15 7200 15 28800 15 10 11 /
1366 2 1 15 7200 15 28800 15 9 1 /
562 2 1 15 7200 15 28800 15 74 11 /
103 2 1 15 7200 15 28800 15 9 51 /
2 21 15 7200 15 28800 15 1 1 /
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121 15 7200 15 28800 15 51 2 /
102 2 1 15 7200 15 28800 15 9 51 /
/

LUVPED MASSES

kkkkkhkkkkkkkkx
<NOTE: > UNITS: kg, nis
<<<<< FORMAT >>>>>
NODE DOF-X DOF-Y MASS G- X G--Y Vo-X Vo-Y [ #NODE d(NODE) ] /
/

| MPULSE FORCES
<NOTE: > UNITS: Sec, kN
<<<<< FORMAT >>>>>
NODE DOF T1 F1 T2 F2 T3 F3 T4 F4 [ #NODE d(NCDE) ] /
/

GROUND ACCELERATI ON

<NOTE: > UNITS: Sec, nis2
<<<<< FORMAT >>>>>
TI ME ACC- X ACC- Y
/

<NOTES: >
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BD. L2R
* * * * * * * * * * * * *
* VecTor 2 *
* LOAD DATA *
* % % * % % % % % % *x * %
LOAD CASE PARAMETERS
kkkkkkhkkkkkkkkkkkkkk*x
Structure Title (30 char. nax.) : Enter Structure Title
Load Case Title (30 char. nax.) . Enter |load case title
Load Case File Nane (8 char. nax.) . FD
No.

of Loaded Joints 0
No. of Prescribed Support Displacenents :
No. of Elements with Gavity Loads

No. of Elements with Tenperature Loads
No. of Elenents with Concrete Prestrain
No. of Elements with Ingress Pressure
No. of El ement Surfaces w Thernal Load
No. of Nodes with Lunped Masses
No. of Nodes with Inpul se Forces
Ground Accel eration Record (0-1)

[eNeoloNoNoNoNoNal

JO NT LOADS
<NOTE: > UNITS: KIPS OR KN
<<<<< FORMAT >>>>>
NCDE ~ Fx Fy [ #NODE d(NODE) d(Fx) d(Fy) ] /
/
SUPPORT DI SPLACEMENTS
IR R EEEEEEEEEEEEEESEEEE]
<NOTE: > UNI'TS: MM OR I N
<<<<< FORVAT >>>>>
JNT DOF DISPL [ #JNT d(JINT) ] /
738 1 1.000/
/
GRAVI TY LOADS
kkkkkhkkkkkkkkx
<NOTE: > UNITS: K& M3
<<<<< FORMAT >>>>>
ELMI DENS GX GY [#ELMTI d(ELMT)] [ #ELMI d(ELMN)] /

TEMPERATURE LOADS
ERE R R R RS EEEEEEEE SRS

<NOTE:> UNITS: F OR C

<<<<< FORVAT >>>>>

ELMI  TEMP [ #ELMI d(ELMI) d(TEMP) ] [ #ELMT d(ELMT) d(TEMP) ] /

CONCRETE PRESTRAI NS
<NOTE: > UNITS: ne
<<<<< FORMAT >>>>>
ELMI  STRAIN [ #ELMI d(ELMT) d(STRAIN) ] [ #ELMI d(ELMI) d(STRAIN) ] /
/
| NGRESS PRESSURES
kkkkkkkkkkkkkkkk*x
<NOTE: > UNITS: MPa
<<<<< FORMAT >>>>>
ELMI PRESSURE [ #ELMI d(ELMI) d(PRS) ] [ #ELMI d(ELMT) d(PRS) ] /
/
SURFACE THERMAL LOADS
<NOTE: > UNITS: Sec, Degrees C
<<<<< FORMAT >>>>>
NCDE1 NCDE2 Tmil Tpl TnR Tp2 TnB Tp3 [#SURF d(NODE)] [#SURF d(NODE)] /
/
LUMPED MASSES
kkkkkkkkkkkk*%x
<NOTE: > UNITS: kg, m's
<<<<< FORMAT >>>>>
NODE DOF-X DOF-Y MASS GF-X GF-Y Vo-X Vo-Y [ #NODE d(NODE) ] /
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| MPULSE FORCES

<NOTE: > UNITS: Sec, kN
<<<<< FORMAT >>>>>
NODE DOF T1 F1 T2 F2 T3 F3 T4 F4 [ #NODE d(NODE) ] /
/

GROUND ACCELERATI ON

kkkkkkkkkkkkkkkkkk*x
<NOTE: > UNITS: Sec, G
<<<<< FORMAT >>>>>
TI ME ACC- X ACC Y
/

<<< LOAD FI LE NOTES >>>
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BG L2R
* * * * * * * * * * * * *
* VecTor 2 *
* LOAD DATA *
* % % * % % % % % % *x % %
LOAD CASE PARAMETERS
kkkkkkhkkkkkkkkkkkkkk*x
Structure Title (30 char. nax.) : Frane
Load Case Title (30 char. nex.) . Gravity
Load Case File Nane (8 char. nax.) : BG
No. of Loaded Joints : 0

No. of Prescribed Support Displacenents : O

No. of Elements with Gravity Forces : 1240
No. of Elements with Tenperature Change :
No. of Elements with Concrete Prestrain
No. of Elements with Ingress Pressure
No. of Nodes with Thermal Load

No. of Nodes with Lunped Masses

No. of Nodes with Inpul se Forces

Ground Accel eration Record (0-1)

[eNeoloNoNoNeNo]

JO NT LOADS
<NOTE: > UNITS: KN
<<<<< FORMAT >>>>>
NODE  Fx Fy [ #NCDE d(NODE) d(Fx) d(Fy) ] /
/
SUPPCRT DI SPLACEMENTS
IR R EEEEEEEEEEEEEESEEEE]
<NOTE: > UNITS: MM
<<<<< FORVAT >>>>>
JNT DOF DISPL [ #JNT d(JNT) ] /
/
GRAVI TY LOADS
<NOTE: > UNITS: KG M3
<<<<< FORMAT >>>>>
ELMI DENS GX GY [#ELMT d(ELMT)] [ #ELMT d(ELMD)] /
1 1 0 1 1240 1/
/
TEMPERATURE LOADS
ERE R R R RS EEEEEEEE SRS
<NOTE:> UNITS: C
<<<<< FORVAT >>>>>
ELMI  TEMP [ #ELMI d(ELMI) d(TEMP) ] [ #ELMT d(ELMT) d(TEMP) ] /

CONCRETE PRESTRAI NS
<NOTE: > UNITS: ne
<<<<< FORMAT >>>>>
ELMI  STRAIN [ #ELMI d(ELMT) d(STRAIN) ] [ #ELMI d(ELMI) d(STRAIN) ]
/

| NGRESS PRESSURES

kkkkkkkkkkkkkkkk*x
<NOTE: > UNITS: MPa
<<<<< FORMAT >>>>>
ELMI PRESSURE [ #ELMI d(ELMI) d(PRS) ] [ #ELMI d(ELMT) d(PRS) ] /
/

NODAL THERVAL LQADS
<NOTE: > UNITS: Sec, Degrees C
<<<<< FORMAT >>>>>
NCDE TYPE Tnl Tpl TnR Tp2 TnB Tp3 [#NODE d(NODE)] [#NODE d( NODE) ]
/

LUMPED MASSES
kkkkkkkkkkkk*%x

<NOTE: > UNITS: kg, m's
<<<<< FORMAT >>>>>
NODE DOF-X DOF-Y MASS GF-X GF-Y Vo-X Vo-Y [ #NODE d(NODE) ] /
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| MPULSE FORCES

<NOTE: > UNITS: Sec, kN
<<<<< FORMAT >>>>>
NODE DOF T1 F1 T2 F2 T3 F3 T4 F4 [ #NODE d(NCDE) ] /
/

GROUND ACCELERATI ON

IR R E R EEEEEEEEEESEEEE]
<NOTE: > UNITS: Sec, nis2
<<<<< FORMAT >>>>>
TI ME ACC- X ACC- Y
/

<NOTES: >
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000000

o000 O

Appendix G V2HEAT Source Gode

SUBROUTI NE HEAT( MOPT, TTI ME, STI Mg, DTI ME)

Thi s subprogram conmput es el enent tenperatures based on two-
di nensi onal transient nonlinear heat flow analysis in which
bi li near 4-node quadrilateral and |inear 3-node triangul ar
el enents are enpl oyed.

PARAMETER ( MELME5000, MI'YP=25, MINT=5200, MBOUN=299, MPROF=99999)
IMPLICIT REAL (A-H O 2)
COMMON / STR PARA/ STRI D, SUNI TS, NRC, NS, NB, NREC, NQUAD, NTRI G, NTRUSS,

* NLI NK, NCONT, NJ, NR, NELEMI
COWDON / CONC SPECI FI CATI ONS/ FC, FT, EC, EO, MJ, CEC, T, AGG,
* SCRX, SCRY, SMA, URF, DENS, DFSV, NSC, TBS

COMMON / LTYPE/ LTYP

COVMMON /| NCI DENCES/ | NC, MAT

COMMON / COORDI NATES/ X, Y

COMMON / THERVALL/ TEMPN, TEMPL, TEMP
COWMON / THERVAL3/ NTHER, NLOAD, TLOAD
COVMMON / REDUCTI ON/' TRC, TRS

COMMON / QUADY Q NC, QAGS, THK, AGS, CGX, CGY

| NTEGER MOP
| NTEGER NRC, NS, NB, NREC, NQUAD, NTRI G, NTRUSS, NLI NK, NCONT

| NTEGER NJ, NR, NELEMT

| NTEGER | NC{ MELM 6) , MAT( MELM , LTYP( MELM

| NTEGER NSC({ MI'YP)

| NTEGER NTHER, NLOAD{ MJNT)

| NTEGER Qf NC({ MELM 4)

REAL QAGS(MELM 2), THK( MELM

REAL AGS(MELM) , CGX( MELM , CGY( MELM

REAL FO(MTYP), FT( MIYP), EC( MIYP) , MJ MTYP) , CEC( MTYP) , T( MI'YP)
REAL SCRX( MTYP), SCRY( MTYP) , SMA( MTYP) , AGX MTYP)

REAL URF( MTYP) , DENS( MTYP) , EO( MI'YP) , DFSV( MTYP)

REAL TBS(MTYP)

REAL X(MINT), Y( MINT)

REAL TEMPL( MELM) , TEMP( MELM) , TEMPN( MINT)

REAL TLOAD( MINT)

REAL TTI ME, STI ME, DTI ME

REAL TRC(MELM 4), TRS(MELM 4)

CHARACTER*30 STRI D

CHARACTER* 10 SUNI TS

| NTRODUCED | N PART 1

| NTEGER NNPEL( MELM , NCONC( MELM 4) , MTYPE( MELM) , ECONC( MELM
| NTEGER NI TER NVATR, | TRAN, NNPFC, NPO N, NELEM

REAL ALPHA, TOLER RELAX, COORD( MINT, 2) , DEN( MTYP) , DI FS( MI'YP)
| NTRODUCED | N PART 2

| NTEGER NFI XB, NFI XD({ MBOUN) , | FFI X( MINT)

| NTEGER NPROF, NCOLM MINT) , NDI AG( MJNT)

REAL FI XED( MBOUN) , TEMPR( MINT) , TFI XD( MJNT)

| NTRODUCED | N PART 3 CR 4

REAL ASTI F(4, 4), AVASS(4, 4) , TLAST( MINT) , GSTI F( MPROF) , EFORC( 4)
REAL FORCE(MINT), TEMP1( 4, 4) , RVECT( 4)

| NTEGER NDFEL( 4)

LOCAL VAR ABLES

I NTEGER |, | ELEM | NOD, | MAT, | BC, J, JELEM KELEM

PART 11111 I'NI TI ALl ZATI ON OPERATI ON 11111
*** MESH | NFORVMATI ON ADAPTI ON

NNPFC=2
NPO N=NJ
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N W

C ***

C * % %

C * % %

NMVATR=NRC

I ELEM=0
DO 4 JELEM-1, NELEMI

APPENDIX C V2HEAT SOURCE CODE

IF ((LTYP(JELEM . LE. 3) .AND. (LTYP(JELEM).GE. 1)) THEN

| ELEM=| ELEMF1
ECONC( | ELEM =JELEM
ENDI F
CONTI NUE
NELEM:I ELEM

DO 1 | ELEM=1, NELEM
JELEMEECONC( | ELEM

IF ((LTYP(JELEM . EQ 1). OR (LTYP(JELEM.EQ 2)) THEN

NNPEL( | ELEM =4
ELSElI F (LTYP(JELEM . EQ 3) THEN
NNPEL( | ELEM =3
ENDI F
MTYPE( | ELEM =MAT( JELEM
CONTI NUE

DO 2 | ELEM=1, NELEM
JELEM=ECONC( | ELEM
DO 3 | NOD=1, NNPEL( | ELEM
I F (LTYP(JELEM.NE. 2) THEN
NCONC( | ELEM | NOD) =I NC( JELEM | NOD)
ELSE
NCONC( | ELEM | NOD) =Q NC( JELEM | NOD)
ENDI F
CONTI NUE
CONTI NUE

DO | NOD=1, NPOI N
COORD( | NOD, 1) =X( | NOD) / 1000
COORD( | NOD, 2) =Y( | NOD) / 1000

END DO

I F (NELEM NE. NREC+NQUAD+NTRI G THEN

WRI TE (*,*) ' MESH I N PROCESS | N V2HEAT | S WRONG '

STOP
END | F

IF (TTIME LE. 1.0E-3) THEN
DO I =1, NPOI N
TEMPR(1)=0.0

END DO

GOTO 501

ENDI F

CONTROAL | NDI CES SPECI FI CATI ON

I ALPHA: TI ME STEPPI NG FACTOR CORRESPONDS TQ
1/2: CRANK- NI COLSON SCHEME ( ACCURATE)
2/3: GALERKI N SCHEME ( STABLE)

ALPHA=2. 0/ 3

NI TER=100

TOLER=1. E- 6

| RELAX: RELAXATI ON FACTOR FOR NONLI NEAR PROBLEM

RELAX=1. 0

MATERI AL PROPERTI ES ADAPTI ON

DO | MAT=1, NVATR

DEN( | MAT) =DENS( | MAT)

DI FS( | MAT) =DFSV( | MAT)

END DO

ADD | NTERNAL HEAT RESOURCE HERE | F APPL| CABLE

| F (MOPT. EQ 1) THEN
| TRAN=O

ELSE
| TRAN=1

ENDI F
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O0000

205
C ***
C ***

206

207
C * % %

208

209
C ***

000

OO0

300

0000

501

0
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PART 22222 PRESCRI BE | NI TI AL AND BOUNDARY CONDI Tl ONS

DI RI CHLET BOUNDARY CONDI TI ONS ( FI XED TEMPERATURE)
TREATED AS NODAL THERMAL LOAD |N DR VECCHI O S DATE DESI GN
NFI XB=NTHER

DO 205 | BC=1, NTHER

NFI XD( | BC) =NLOA | BC)

FI XED( | BC) =TLOAX | BC)

CONTI NUE

ADD NEUVANN BOUNDARY CONDI TI ONS ( FI XED FLUX) HERE | F APPLI CABLE

22222

I NI TI AL TEMPERATURE FI ELD FOR NON- LI NEAR AND/ OR TRANSI ENT PROBLEMS

DO 206 | NOD=1, NPOI N
TENMPR( | NOD) =TEMPN( | NOD)
CONTI NUE
DO 207 | BC=1, NFI XB
TEMPR( NFI XD( | BC) ) =FI XED( | BC)
CONTI NUE
SET UP ARRAYS FOR FI XED BCs AND | NI TI ALI SE VECTOR NCOLM
DO 208 | =1, NPO N
I FFI X(1) =0
NCOLM 1) =1
CONTI NUE
DO 209 | =1, NFI XB
NOD=NFI XD( | )
| FFI X( NOD) =1
TFI XD{ NOD) =FI XED( | )
CONTI NUE
SET UP THE VECTOR NCOLM NDI AG AND CALCULATE NPROF
CALL DI AGNL( MELM NELEM NPO N, NNPEL, MINT, NCOLM
NCONC, NDI AG, NPROF, | FFI X)
IF (1 TRAN. EQ 1) GOTO 300

PART 33333 PERFCRM STEADY- STATE ANALYSI S

CALL STEADY( MELM MINT, MI'YP, MPROF, TOLER, RELAX,
I TRAN, NI TER, NELEM NPO N, NNPEL,
NPROF, NDFEL, NCONC, NDI AG, | FFI X, TFI XD,
ASTI F, AMASS, GSTI F, EFORC, FORCE, TLAST,
TEMPR, COORD, DEN, DI FS, MTYPE)

GOTO 501

PART 44444 PERFORM TRANSI ENT  ANALYSI S

CONTI NUE

CALL TRANSI ( MELM MINT, MPROF, TOLER, | TRAN, NI TER,
NELEM NPO N, NNPEL, NPROF, NDFEL, NCONC,
NDI AG, | FFI X, TFI XD, ASTI F, AVASS, GSTI F,
EFORC, FORCE, TLAST, TEMPR, COORD, DTI ME,
ALPHA, TEMP1, RVECT, MI'YP, MT'YPE, DEN, DI FS)

PART 55555 QUTPUT RESULTS(TEMP. ON NODES AND CENTRO DS)

RESTORE RESULTS I N ' TEMPN FROM ' TEMPR
CONTI NUE
DO | NOD=1, NPOI N
TEMPN( | NOD) =TEMPR( | NOD)
I'F (TEMPN(I NOD). LT. 1. E-6) TEMPN(1 NOD) =0. 0
END DO
CALCULATE TEMPERATURE ON CENTROI D OF ELEMENTS
I'F (STIME LT. TTI ME) GOTO 502
| ELEM=0
DO 8 JELEM=1, NELEMT
IF ((LTYP(JELEM . LE. 4) .AND. (LTYP(JELEM).GE.1)) THEN
| ELEM=| ELEMFL
ECONC( | ELEM =JELEM
ENDI F
CONTI NUE
NELEM:I ELEM
DO 5 | ELEM=1, NELEM
JELEMEECONC( | ELEM
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IF ((LTYP(JELEM . EQ 1). OR (LTYP(JELEM.EQ 2)) THEN
NNPEL( | ELEM =4

ELSEI F (LTYP(JELEM . EQ 3) THEN
NNPEL (| ELEM =3

ELSEI F (LTYP(1).EQ 4) THEN
NNPEL( | ELEM =2

ENDI F

5 CONTI NUE
DO 6 | ELEM=1, NELEM

JELEMEECONC( | ELEM

DO 7 | NOD=1, NNPEL( | ELEM
IF (LTYP(JELEM.NE. 2) THEN

NCONC( | ELEM | NOD) =I NCO( JELEM | NOD)

ELSE
NCONC( | ELEM | NOD) =Q NC( JELEM | NOD)
ENDI F
7 CONTI NUE
6  CONTI NUE

I F (NELEM NE. NREC+NQUAD+NTRI G+NTRUSS) THEN
WRI TE (*,*) ' MESH OUT PROCESS | N V2HEAT |'S WRONG '
STOP
END I F
DO 92 |=1, NELEM
JELEM=ECONC( | )
TEMPL(1)=0.0
DO 93 J=1, NNPEL( 1)
NOD=NCONC( | , J)
TEMPL( JELEM) =TEMPL( JELEM +TEMPN( NOD) / NNPEL( | )
93  CONTI NUE
92 CONTI NUE
C
502 RETURN
END

SUBROUTI NE DI AGNL( MELM NELEM NPQ N, NNPEL, MJNT, NCOLM
- NCONC, NDI AG, NPROF, | FFI X)
DI AGNL
Set up the vector 'NDIAG storing the diagonal dof nunber for DI AGNL
each colum of the global stiffness matrix. DI AGNL
DI AGNL

000000

I MPLI CI T REAL(A-H, O-2)
| NTEGER NCONC( MELM 4) , NCOLM MINT) , NDI AG{ MINT) ,
- | FFI X( MINT) , NNPEL( MELM
DO 45 | =1, NELEM
NL=NPOI N
DO 46 J=1, NNPEL( 1)
K=NCONC( | , J)
IF (1 FFI X(K). EQ 1) GOTO 47
IF (K LT.NL) Ni=K
47  CONTI NUE
46 CONTI NUE
DO 48 J=1, NNPEL(1)
K=NCONC( | , J)
IF (1 FFIX(K). EQ 1) GOTO 49
N2=K- N1+1
IF (NCOLM K) . LT. N2) NCOLM K) =N2
49  CONTI NUE
48  CONTI NUE
45 CONTI NUE
NDI AG( 1) =1
DO 50 J=2, NPOI N
NDI AG( J) =NDI AG( J- 1) +NCOLM J)
50 CONTI NUE
NPROF=NDI AG( NPOI N)

RETURN
END

SUBRQUTI NE STEADY ( MELM MINT, MTYP, MPROF, TOLER, RELAX,

131



0O000

C ***

120

121

124
123

* Kk k

(@]

* Kk k

* Kk k

* % %

0O00000000

125

C * % %

127
106
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I TRAN, NI TER, NELEM NPO N, NNPEL,
NPROF, NDFEL, NCONC, NDI AG, | FFI X, TFI XD,
ASTI F, AVASS, GSTI F, EFORC, FORCE, TLAST,
TEMPR, COORD, DEN, DI FS, MI'YPE)

This subroutine perforns steady state analysis

| MPLI O T REAL(A-H, O-2)
REAL ASTI F(4, 4), AMASS( 4, 4) , DEN( MTYP) , DI FS( MI'YP)
REAL EFORC(4), XCORD( 4) , YCORD( 4) , TFI XD( MJNT) , COORD( MINT, 2) ,
GSTI F( MPROF) , FORCE( MINT) , TLAST( MINT) , TEMPR( MJNT)
| NTEGER | FFI X( MINT) , NCONC( MELM 4) , NDFEL( 4) , NDI AG{ MINT) ,
NNPEL ( MELM) , MI'YPE( MELM

PERFCRM STEADY STATE ANALYSI S

DO 119 | TER=1, NI TER

JI TER=I TER

DO 120 | =1, NPOI N

FORCE( 1) =0. 0

TLAST(1) =TEMPR( | )

CONTI NUE

DO 121 | =1, NPROF

GSTIF(1)=0.0

CONTI NUE

DO 122 | ELEM=1, NELEM

| MATR=MTYPE( | ELEM

CALL PROPTY(! ELEM MELM MJNT, NNPEL, TEMPR, DEN, DI FS, MTYP,
NCONC, DENST, CONDT, DI FST, CAPCT, | MATR)

DO 123 | =1, NNPEL( | ELEM

NDFEL (1) =NCONC(| ELEM 1)

| D=NDFEL( 1)

EFORC( 1) =0. 0

XCORD( | ) =COORD( | D, 1)

YCORD( | ) =COORD( | D, 2)

DO 124 J=1, NNPEL(| ELEM

ASTIF(1,J)=0.0

CONTI NUE

CONTI NUE

CONSTRUCT ELEMENT STI FENESS MATRI X

CALL STIFFN (MELM | ELEM NNPEL, | TRAN, DENST, CONDT,
CAPCT, ASTI F, AMASS, XCORD, YCORD)

CALCULATE NEUMANN BOUNDARY CONDI TI ON EFFECTS ON THE FORCE VECTOR

STEADY
STEADY
STEADY

ADD ( ELEMENT' S) | NTERNAL VOLUMETRI C HEAT RESOURCE TO THE FORCE VECTOR

TRANSFER ELEMENT FORCES TO GLOBAL FORCE VECTOR

DO 125 J=1, NNPEL(| ELEM
NOD=NDFEL( J)

FORCE( NOD) =FORCE( NOD) +EFORC( J)
CONTI NUE

MODI FY FORCE VECTOR TO ACCOUNT FOR FI XED TEMPERATURE NODES

DO 126 J=1, NNPEL(| ELEM

| RONENDFEL( J)

IF (1 FFIX(I ROW.EQ 1) GOTO 106

DO 127 K=1, NNPEL( | ELEM

| COL=NDFEL( K)

IF (1 FFIX(ICOL). EQ 1) THEN

FORCE( | ROW =FORCE( | ROW - ASTI F(J, K) * TFI XD( | COL)
ENDI F

CONTI NUE

CONTI NUE
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126 CONTI NUE
C
C *** ASSEMBLE | NTO GLOBAL MATRI X | N VECTCR FORM
c
DO 128 J=1, NNPEL(| ELEM
DO 129 K=J, NNPEL( | ELEM
| RONENDFEL( J)
IF (1 FFIX(I ROW.EQ 1) GOTO 103
| COL=NDFEL( K)
F (I FFI X(1 COL). EQ 1) GOTO 103
F (I RONLE. 1 COL) GOTO 104
TEM=I ROW
ROWEI COL
| cOL=I TEM
104 | RC=NDI AG( | COL) - | COL+I ROW
GSTI F(1 RC) =GSTI F(1 RC) +ASTI F( J, K)

103 CONTI NUE
129 CONTI NUE
128 CONTI NUE
122 CONTI NUE
C
C *** SOLVE THE FI NAL SYSTEM USI NG PROFI LE SOLVER
C
C 1. SET DI AGONAL ELEMENTS OF GSTIF CORRESPONDI NG TO FI XED TEMPERATURE
C NODES EQUAL TO UNI TY AND THE FORCE VECTOR TO THE FI XED VALUE
C
DO 130 | =1, NPOI N
IF (IFFIX(1).EQ 1) THEN
J=NDI AG( I )
GSTIF(J)=1.0
FORCE( | ) =TFI XD( 1)
TEMPR(1 ) =TFI XD( | )
ENDI F
130 CONTI NUE
C

C 2. SOLVE THE FINAL SYSTEM USI NG PROFI LE SOLVER
CALL PROFAC ( MPROF, MINT, NPOI N, GSTI F, NDI AG)
CALL PROSOL ( MPROF, MJNT, NPOI N, GSTI F, FORCE, TEMPR, NDI AG)
C PERFORMS RELAXATI ON FORMULA FOR NON- LI NEAR PROBLEM
DO 118 | =1, NPOI N
TEMPR( | ) =RELAX* TEMPR( | ) +( 1. 0- RELAX) * TLAST( I )

118 CONTI NUE
Cc
C *** CHECK FOR CONVERGENCE OF | TERATI ON
C
IF (I TER EQ 1) THEN
CALL L2NORM ( MINT, NPO N, TNRML, TEMPR)
ELSE
CALL L2NORM ( MINT, NPO N, TNRM2, TEMPR)
CONVG=ABS( TNRM2- TNRML) / TNRM2
| F (CONVG LE. TOLER) GOTO 150
TNRML=TNRM2
ENDI F
119 CONTI NUE
VRI TE (*, 151)
STOP 3333
150 CONTI NUE
151 FORMAT (//"' ',' HEAT FLOW SCLUTI ON HAS FAI LED TO CONVERGE')
RETURN
END
SUBRQUTI NE PROPTY( | ELEM MELM MINT, NNPEL, TEMPR, DEN, DI FS, MTYP,
- NCONC, DENST, CONDT, DI FST, CAPCT, | MATR)
S
Cc
C This subroutine cal cul ates tenperature-dependent properties
C
C
C DENST : El enent average density val ue
C CONDT : El enent average conductivity val ue
C DI FST : Elenent average diffusivity val ue
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CAPCT : El enent average specific heat val ue
IMPLICI T REAL(A-H, O 2)

I NTEGER NNPEL( MELM , NCONC( MELM 4)

REAL DEN(MTYP), DI FS( MI'YP) , TEMPR( MINT)

TEMPT=0. 0
DO 41 1=1, NNPEL(I|ELEM
TEMPT=TEMPT+TEMPR( NCONC( | ELEM | ) ) / NNPEL( | ELEM)

41 CONTI NUE

DENST=DEN( | MATR)

DI FST=DI FS(| MATR)

DI FST=9. 16391E- 7* TEMPT* * 2- 0. 00136982* TEMPT+0. 909062
CONDT=1. 36469E- 6* TEMPT** 2- 0. 00256908* TEMPT+2. 24266
DI FST=DI FST/ 1. OE6

CAPCT=CONDT/ DENST/ DI FST

RETURN

END

SUBRQUTI NE STI FEN ( MELM | ELEM NNPEL, | TRAN, DENST, CONDT,
CAPCT, ASTI F, AMASS, XCORD, YCORD)

This subroutine constructs element [K] & [C] matrices

I MPLI CI T REAL(A-H, O-2)
REAL ASTI F(4, 4), AVASS( 4, 4) , XCORD( 4) , YCORIX 4)
| NTEGER NNPEL( MELM

*** CONSTRUCT STI FFNESS AND MASS MATRI CES

I F (NNPEL(I ELEM . EQ 4) THEN
| RECTANGULAR S| MPLI FI ED SCHEME
CALL SSTI F4( ASTI F, XCORD, YCORD, CONDT)
I'F (1 TRAN. EQ 1) THEN
CALL SMASS4( AMASS, XCORD, YCORD, DENST, CAPCT)
ENDI F
ELSEI F ( NNPEL(| ELEM . EQ 3) THEN
C1=YCORD 2) - YCORD( 3)
C2=YCORD 3) - YOORD( 1)
C3=YCORDY 1) - YCORD( 2)
D1=XCORD 3) - XCORY 2)
D2=XCORD( 1) - XCORDY 3)
D3=XCORD 2) - XCORDY 1)
AREA=0. 5* ( D2* C1- D1* C2)
FACTK=CONDT/ ( 4* AREA)
ASTI F( 1, 1) =( CL* C1+D1* D1) * FACTK
ASTI F( 1, 2) =( CL* C2+D1* D2) * FACTK
ASTI F( 1, 3) =( C1* C3+D1* D3) * FACTK
ASTI F( 2, 2) =( C2* C2+D2* D2) * FACTK
ASTI F( 2, 3) =( C2* C3+D2* D3) * FACTK
ASTI F( 3, 3) =( C3* C3+D3* D3) * FACTK
IF (I TRAN. EQ 1) THEN
FACTC=DENST* CAPCT* AREA/ 12. 0
AMASS( 1, 1) =2* FACTC
AMASS( 1, 2) =1* FACTC
AMVASS( 1, 3) =1* FACTC
AVASS( 2, 2) =2* FACTC
AMASS( 2, 3) =1* FACTC
AVASS( 3, 3) =2* FACTC
ENDI F
ENDI F
FILL IN THE SYMVETRI C PART OF MATRI CES
DO 51 | =2, NNPEL(| ELEM
DO 52 J=1, (I -
ASTI F( 1, J) =ASTI F(J, 1)
IF (I TRAN. EQ 1) AMASS(1, J)=AMASS(J, I)

52 CONTI NUE
51 CONTI NUE
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RETURN
END
SUBRQOUTI NE SSTI F4( ASTI F, XCORD, YCORD, CONDT)

This subroutine generates the "analytical" stiffness matrix
for a four node quadrilateral in plane strain based on N P=4.

| MPLI O T REAL(A-H, O-2)
REAL ASTI F( 4, 4), XCORD( 4) , YCORD( 4)
REAL X1, X2, X3, X4, Y1, Y2, Y3, Y4, A2, A2ST3,
ALPH, BETA, F1, F2, S1, S2, S3, S4, T1, T2, T3, T4

X1=XCORD( 1)
X2=XCORDY 2)
X3=XCORDY 3)
X4=XCORDY 4)
Y1=YCORDY 1)
Y2=YCORD 2)
Y3=YCORD 3)
Y4=YCORDY 4)

A2=( Xd- X2) * (Y3- Y1) - ( X3- X1) *( Y4- Y2)
A2ST3=3. 0% A2* A2

CALL GRUPA( X1, X2, X3, X4, Y1, Y2, Y3, Y4, S1, S2, S3, $4,
- T1, T2, T3, T4, F1, F2)

ALPH=CONDT* ( A2* ( S1+S2) +F1* ( S3+34))

BETA=CONDT* ( A2* ( T1+T2) +F2* ( T3+T4))

ASTI F( 1, 1) = (ALPH ( A2ST3- F1**2) +BETA/ ( A2ST3- F2* * 2) ) * 0.

CALL GRUPA(X2, X3, X4, X1, Y2, Y3, Y4, Y1, S1, S2, S3, S4,
- T1, T2, T3, T4, F1, F2)

ALPH=CONDT* ( A2* ( S1+S2) +F1* ( S3+34))

BETA=CONDT* ( A2* ( TL+T2) +F2* ( T3+T4))

ASTI F( 2, 2) = (ALPH ( A2ST3- F1**2) +BETA/ ( A2ST3- F2* * 2) ) * 0.

CALL GRUPA( X3, X4, X1, X2, Y3, Y4, Y1, Y2, S1, S2, S3, S4,
- T1, T2, T3, T4, F1, F2)

ALPH=CONDT* ( A2* ( S1+S2) +F1* ( S3+34))

BETA=CONDT* ( A2* ( T1+T2) +F2* ( T3+T4))

ASTI F(3, 3) = (ALPH ( A2ST3- F1**2) +BETA/ ( A2ST3- F2**2) ) *0.

CALL GRUPA( X4, X1, X2, X3, Y4, Y1, Y2, Y3, S1, S2, S3, $4,
- T1, T2, T3, T4, F1, F2)

ALPH=CONDT* ( A2* ( S1+S2) +F1* ( S3+34))

BETA=CONDT* ( A2* ( T1+T2) +F2* ( T3+T4))

ASTI F( 4, 4) =- (ALPH ( A2ST3- F1**2) +BETA/ ( A2ST3- F2* * 2) ) * 0.

CALL GRUPC(X1, X2, X3, X4, Y1, Y2, Y3, Y4, S1, S2, S3, S4,
- T1, T2, T3, T4, F1, F2)

ALPH=CONDT* ( A2* ( S1+S2) +F1* ( S3+54) )

BETA=CONDT* ( A2* ( TL+T2) +F2* ( T3+T4))

ASTI F(1, 2) =- (ALPH ( A2ST3- F1**2) +BETA/ ( A2ST3- F2**2) ) *0.

CALL GRUPC(X2, X3, X4, X1, Y2, Y3, Y4, Y1, S1, S2, S3, $4,
- T1, T2, T3, T4, F1, F2)

ALPH=CONDT* ( A2* ( S1+S2) +F1* ( S3+34))

BETA=CONDT* ( A2* ( T1+T2) +F2* ( T3+T4))

ASTI F( 2, 3) = (ALPH ( A2ST3- F1**2) +BETA/ ( A2ST3- F2* * 2) ) * 0.

CALL GRUPC(X3, X4, X1, X2, Y3, Y4, Y1, Y2, S1, S2, S3, S4,
- T1, T2, T3, T4, F1, F2)

ALPH=CONDT* ( A2* ( S1+S2) +F1* ( S3+34))

BETA=CONDT* ( A2* ( TL+T2) +F2* ( T3+T4))

ASTI F( 3, 4) = (ALPH ( A2ST3- F1**2) +BETA/ ( A2ST3- F2* * 2) ) * 0.

CALL GRUPC(X4, X1, X2, X3, Y4, Y1, Y2, Y3, S1, S2, S3, S4,
- T1, T2, T3, T4, F1, F2)

ALPH=CONDT* ( A2* ( S1+S2) +F1* ( S3+34))

BETA=CONDT* ( A2* ( T1+T2) +F2* ( T3+T4))
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ASTI F( 1, 4) = (ALPH ( A2ST3- F1**2) +BETA/ ( A2ST3- F2**2) ) *0. 5

CALL GRUPE( X1, X2, X3, X4, Y1, Y2, Y3, Y4, S1, S2, S3, 4
T1, T2, T3, T4, F1, F2)

ALPH=CONDT* ( A2* ( S1+S2) +F1* ( S3+34))

BETA=CONDT* ( A2* ( TL+T2) +F2* ( T3+T4))

ASTI F( 1, 3) = (ALPH ( A2ST3- F1**2) +BETA/ ( A2ST3- F2**2))*0. 5

CALL GRUPE( X2, X3, X4, X1, Y2, Y3, Y4, Y1, S1, S2, S3, 4

T1, T2, T3, T4, F1, F2)
ALPH=CONDT* ( A2* ( S1+S2) +F1* ( S3+34))
BETA=CONDT* ( A2* ( T1+T2) +F2* ( T3+T4))
ASTI F( 2, 4) = (ALPH ( A2ST3- F1**2) +BETA/ ( A2ST3- F2**2))*0. 5

RETURN

END

SUBROUTI NE GRUPA( X1, X2, X3, X4, Y1, Y2, Y3, Y4, S1
S2, S3, S4, T1, T2, T3, T4, F1, F2)

| MPLI O T REAL(A-H, O-2)

REAL X1, X2, X3, X4, Y1, Y2, Y3, Y4

REAL S1, S2, S3, S4, T1, T2, T3, T4, F1, F2

S1=2. 0% ( Y4- Y2) **2

S2=2. 0% ( X4- X2) **2

S3=-S1/2.0

$4=-52/2.0

T1=(Y2- Y3) ** 2+( Y3- Y4) ** 2+( Y4- Y2) ** 2

T2=(X2- X3) ** 2+( X3- X4) ** 2+( X4- X2) ** 2

T3=(Y4- Y3) **2- (Y3-Y2) **2

T4=( X4- X3) **2- ( X3- X2) **2

CALL F1F2(X1, X2, X3, X4, Y1, Y2, Y3, Y4, F1, F2)

RETURN

END

SUBROUTI NE GRUPC( X1, X2, X3, X4, Y1, Y2, Y3, Y4, S1
S2, S3, S4, T1, T2, T3, T4, F1, F2)

| MPLI CI T REAL(A-H, O-2)

REAL X1, X2, X3, X4, Y1, Y2, Y3, Y4

REAL S1, S2, S3, S4, T1, T2, T3, T4, F1, F2

S1=(Y4- Y2)*( 2. 0*Y1- Y3- Y4)

S2=( X4- X2) *( 2. 0% X1- X3- X4)

S3=(Y4- Y2) * ( Y4- Y1)

S4=( X4- X2) * ( X4- X1)

T1=(Y3- Y1) *( 2. 0* Y2- Y3- Y4)

T2=(X3- X1) * ( 2. 0* X2- X3- X4)

T3=(Y3- Y1) *( Y3- Y2)

T4=( X3- X1) * ( X3- X2)

CALL F1F2(X1, X2, X3, X4, Y1, Y2, Y3, Y4, F1, F2)

RETURN

END

SUBROUTI NE GRUPE( X1, X2, X3, X4, Y1, Y2, Y3, Y4, S1
S2, S3, S4, T1, T2, T3, T4, F1, F2)

| MPLI O T REAL(A-H, O-2)

REAL X1, X2, X3, X4, Y1, Y2, Y3, Y4

REAL S1, S2, S3, S4, T1, T2, T3, T4, F1, F2

Sl=- (Y4-Y2) **2

S2=- ( X4- X2) **2

$3=0. 0

$4=0. 0

T1=(Y3+YL) * ( YA+Y2) - 2. 0% (Y4- Y2) **2- 2. 0% ( Y1* Y3+Y2* Y4)

T2=( X3+XL) * ( X4+X2) - 2. 0% ( X4- X2) **2- 2. 0% ( X1* X3+X2* X4)

T3=(Y4- Y2) * ( Y1- Y2+Y3- Y4)

T4=( X4- X2) * ( X1- X2+X3- X4)

CALL F1F2(X1, X2, X3, X4, Y1, Y2, Y3, Y4, F1, F2)

RETURN

END

SUBROUTI NE F1F2( X1, X2, X3, X4, Y1, Y2, Y3, Y4, F1, F2)
IMPLICI T REAL(A-H O 2)

REAL X1, X2, X3, X4, Y1, Y2, Y3, Y4

REAL F1, F2
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F1=( X1+X3) * ( Y4- Y2) - (Y1+Y3) * ( X4- X2) - 2. O* ( X2* Y4- X4* Y2)
F2=( Y2+Y4) * ( X3- X1) - ( X2+X4) * ( Y3- Y1) - 2. 0* ( X3* Y1- X1*Y3)
RETURN

END

SUBROUTI NE SMASS4( AMASS, XCORD, YCORD, DENST, CAPCT)

This subroutine generates the anal ytical capacitance matrix
for a four node quadril ateral

I MPLI O T REAL(A-H, O-2)
REAL AMASS( 4, 4), XCORD( 4) , YCORD( 4)
REAL X1, X2, X3, X4, Y1, Y2, Y3, Y4

I NTEGER I, J

X1=XCORD( 1)
X2=XCORDY 2)
X3=XCORDY 3)
X4=XCORDY 4)
Y1=YCORD 1)
Y2=YCORD 2)
Y3=YCORD 3)
Y4=YCORDY 4)

AMASS( 1, 1) =X1* (Y2- Y4) / 12 + X2*(Y3-3*Y1+2*Y4)/ 36
+X3* ( Y4- Y2) | 36 + X4*(3*Y1-2*Y2-Y3)/ 36
AVASS( 1, 2) =X1* (3% Y2- Y3- 25 YA) [ 72 + X2*(2*Y3- 3*Y1+Y4)/ 72
+X3* (Y1- 25 Y2+Y4) [ 72 + X4*(2*Y1-Y2-Y3)/ 72
AMASS( 1, 3) =X1* (Y2- Y4) / 72 + X2*(Y3-Y1)/ 72
+X3* (Y4-Y2) | 72 + X4*(Y1-Y3)/ 72
AVASS( 1, 4) =X1* (2% Y2+Y3- 3*Y4) [ 72 + X2*(Y3- 2*Y1+Y4)/ 72
+X3* (2% Y4-Y1-Y2) [ 72 + X4*(3*Y1-Y2-2*Y3)/ 72
AMASS( 2, 2) =X1* (3* Y2- 2¥Y3- Y4) [ 36 + X2*(Y3-Y1)/12
+X3%( 2*Y1+Y4- 3*Y¥2) / 36 + X4*(Y1-Y3)/ 36
AVASS( 2, 3) =X1* (2*Y2-Y3-Y4)/ 72 + X2*(3*Y3-2*Y1-Y4)/ 72
+X3* (2% YA+Y1-3*Y2) / 72 + X&*(YL1+Y2-2*Y3)/ 72
AVASS( 2, 4) =X1* (Y2- Y4) | 72 + X2*(Y3-Y1)/ 72
+X3* (Y4-Y2) | 72 + X4*(Y1-Y3)/ 72
AMASS( 3, 3) =X1* (Y2- Y4) / 36 + X2*(3*Y3-Y1-2*Y4)/ 36
+X3* (Y4-Y2) / 12 + X4* (Y1+2*Y2- 3*Y3)/ 36
AMASS( 3, 4) =X1* (Y2+Y3-2*Y4) [ 72+ X2*(2*Y3-Y1-Y4)/ 72
+X3% (3% Y4- Y1- 2% Y2) [ 72 + X4*(2*Y1+Y2- 3*Y3)/ 72
AVASS( 4, 4) =X1* ( Y2+2* Y3-3*Y4) / 36 + X2*(Y3-Y1)/ 36
+X3% (3% Y4- 2% Y1- Y2) / 36 + X4*(Y1-Y3)/12
DO I=1,4
DO J=I, 4
AVASS( | , J) =DENST* CAPCT* AMASS( | , J)
END DO
END DO
RETURN
END

This subroutine factorizes the global stiff matrix

I MPLI CI T REAL(A-H, O-2)
REAL A( MPROF)

| NTEGER N, ND{ MINT)

IF (A(1).GT.0.0) GOTO 78
WRI TE(*,*) ' GSTIF I'S NOT PCSI TI VE DEFI NI TE!'!
STOP 2222

CONTI NUE

DO 77 J=2,N

Ji1=J3-1

NI=ND( J1)

JI=ND( J)
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NCI=JJ- NJ
I F (NCJ. EQ 1) GOTO 77
IF (J1.EQ 1) GOTO 75
DO 74 1=2,J1
IM =J-1
IF (NCJ. LE. (JM +1)) GOTO 74
1=1-1
N =ND( | 1)

NI=ND( J1)

I1=ND(1)

1J=33-IM

NCI =11 -NI

NCJI =NCJ- M

NCD=NCJI - NI

I F (NCD.LT.0) GOTO 71

K1=NCl - 1

NJ=NJ+NCD

GOTO 72

K1=NCJI - 1

NI =NI - NCD

SUMEA( 1 J)

I F (K1.EQ 0) GOTO 74

DO 73 K=1, K1

KI =NI +K

KI=NJ+K

SUMESUM A KI ) * A(KJ)

CONTI NUE

A(1J)=SUM

CONTI NUE

SUMEA( JJ)

NCJ1=NCJ- 1

DO 76 K=1, NCJ1

KI=ND( J1) +K

KK=ND( J- NCJ +K)

TEMP=A( KJ) / A( KK)

SUM=SUM TEMP* A( KJ)

A(KJ) =TEMP

CONTI NUE

I'F (SUM LE. 0.0) GOTO 79
A(JJ) =SUM
CONTI NUE
RETURN
END

SUBROUTI NE PROSOL ( MPROF, MINT, N, U, B, X, ND)

This subroutine solves the final system

I MPLI CI T REAL(A-H, O 2)
REAL U( MPRCF) , B( MINT) , X( MINT)
| NTEGER N, ND{ MINT)
DO 82 1=1,N

SUMEB( 1)

IF (1.EQ 1) GOTO 86
11=1-1

NI =ND( | 1)

[1=ND(1)

NCI =l 1-N

K1=NCl - 1

KR=1 - NCI

| F (K1.EQ 0) GOTO 86
DO 81 K=1, K1

KI =NI +K

KR=KR+1

SUMESUM U( KI ) * X( KR)
CONTI NUE

X(1)=SUM

CONTI NUE

DO 83 1=1,N
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11 =ND(1)
X(E)y=X()y/ucrt)
83 CONTI NUE
DO 85 11=1,N
I=N-11+1
K2=1 +1
SUMEX( 1)
IF (1.EQ N GOro 87
DO 84 K=K2, N
Kl=K-1
KM =K- |
NK=ND( K1)
NCK=ND( K) - NK
NCKI =NCK- KM
I F (NCKI.LE. 0) GOTO 84
| K=NK+NCKI
SUMESUM U( | K) * X( K)
84 CONTI NUE
87 X(1)=SuMm
85 CONTI NUE
RETURN
END
SUBROUTI NE L2NORM ( MINT, NPA N, TNORM TEMPR)
C  crccccccccccccccccccncccnccancancnanananaa
C L2NORM
C This subroutine calculates the L2 normfor a given vector L2NORM
C L2NORM
C
IMPLICI T REAL(A-H, O 2)
REAL TEMPR( MINT)
TMAXME=0. 0
TSUM2=0. 0
DO 98 1=1, NPO N
I'F (TMAXM LT. ABS( TEMPR(1))) TMAXM=ABS( TEMPR(1))
TSUMR=TSUM2+TEMPR(1)**2. 0
98 CONTI NUE
I F (TMAXM EQ 0.0) TMAXM=1.0
TNORMESQRT( ( TSUMR/ TMAXME* 2. 0) / NPAI N)
RETURN
END
SUBROUTI NE TRANSI ( MELM MINT, MPROF, TOLER, | TRAN, NI TER,
- NELEM NPO N, NNPEL, NPROF, NDFEL, NCONC,
- NDI AG | FFI X, TFI XD, ASTI F, AVASS, GSTI F,
- EFORC, FORCE, TLAST, TEMPR, COORD, DTI ME,
- ALPHA, TEMP1, RVECT, MI'YP, MT'YPE, DEN, DI FS)
C TRANSI
Cc Thi s subroutine perforns transient analysis TRANSI
C TRANSI
IMPLICI T REAL(A-H, O 2)
REAL ASTI F(4, 4), GSTI F( MPROF) , AVASS( 4, 4)
REAL EFORC(4), XCORD( 4), YCORD( 4) , FORCE( MJNT) , TLAST( MINT)
REAL TEMPR( MINT) , COORD( MINT, 2), TFI XD( MINT) , TEMP1( 4, 4) , RVECT( 4)
REAL DEN( MTYP), DI FS( MTYP) , TOLER, DTI ME, ALPHA
I NTEGER | TRAN, NI TER, NELEM NPO N, NNPEL( MELM , NPROF, MTYPE( MELM
| NTEGER NDFEL( 4), NCONC( MELM 4) , NDI AG{ MINT) , | FFI X( MJNT)
C
C *** PERFORM TRANSI ENT ANALYSI S
C

DO 135 | =1, NPOI N
TLAST(1) =TEMPR( | )
135 CONTI NUE
DO 136 | TER=1, Nl TER
DO 137 I =1, NPOI N
FORCE( 1) =0. 0
137  CONTI NUE
DO 138 | =1, NPROF
GSTIF(1)=0.0
138 CONTI NUE
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DO 139 | ELEM=1, NELEM
| MATR=MTYPE( | ELEM
CALL PROPTY(| ELEM MELM MINT, NNPEL, TEMPR, DEN, DI FS, MTYP,
- NCONC, DENST, CONDT, DI FST, CAPCT, | MATR)
DO 140 | =1, NNPEL( | ELEM
NDFEL( 1) =NCONC( | ELEM 1)
| D=NDFEL( 1)
EFORC( 1) =0. 0
XCORD( | ) =COORD( | D, 1)
YCORD( | ) =COORD( | D, 2)
DO 141 J=1, NNPEL(| ELEM
AMASS( |, J) =0. 0
ASTIF(1,J3)=0.0
141 CONTI NUE
140 CONTI NUE

*** CONSTRUCT ELEMENT STI FFNESS AND MASS MATRI CES

CALL STIFFN (MELM | ELEM NNPEL, | TRAN, DENST, CONDT,
- CAPCT, ASTI F, AMASS, XCORD, YCORD)

*** CALCULATE NEUVANN BOUNDARY CONDI TI ON EFFECTS HERE
*** ADD (ELEMENT' S) | NTERNAL VOLUMETRI C HEAT RESOQURCE TO THE FORCE VECTOR
*** TRANSFER ELEMENT FORCES TO GLOBAL FORCE VECTOR

DO 142 J=1, NNPEL(| ELEM

NOD=NDFEL( J)

FORCE( NOD) =FORCE( NOD) +EFORC( J)
142 CONTI NUE

*** CALCULATE ELEMENT CONTRI BUTI ON TO FORCE VECTOR ( RHS)

DO 116 | =1, NNPEL(| ELEM

RVECT( 1) =0. 0

DO 111 J=1, NNPEL(| ELEM

TEMPL( 1, J) =AMASS( 1, J) / DTI ME- ASTI F(1, J) * (1. 0- ALPHA)
111 CONTI NUE
116 CONTI NUE

DO 114 | =1, NNPEL(| ELEM

DO 115 J=1, NNPEL( | ELEM

RVECT( 1) =RVECT( 1) +TEMP1( | , J) * TLAST( NDFEL(J))
115 CONTI NUE
114 CONTI NUE

*** ASSEMBLE ELEMENT RHS VECTOR | NTO GLOBAL FORCE VECTOR

DO 143 | =1, NNPEL(| ELEM
NOD=NDFEL( | )
FORCE( NOD) =FORCE( NOD) +RVECT( | )
143 CONTI NUE

*** CALCULATE ELEMENT CONTRI BUTI ON TO SYSTEM MATRI X ( LHS)

DO 91 |=1, NNPEL(| ELEM
DO 105 J=1, NNPEL(| ELEM
TEMPL( 1, J) =AMASS( 1, J) / DTI ME+ASTI F(1, J) * ALPHA
105 CONTI NUE
91 CONTI NUE

C *** ASSEMBLE | NTO GLOBAL MATRI X I N VECTOR FCRM

DO 144 J=1, NNPEL(| ELEM

DO 145 K=J, NNPEL( | ELEM

| RON=NDFEL( J)

IF (1 FFI X(I ROW.EQ 1) GOTO 109
| COL=NDFEL( K)

F (I FFI X(1 COL). EQ 1) GOTO 109
F (IRONLE. | COL) GOTO 110
T
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| RC=NDI AG( | COL) - | COL+I ROW

GSTI F(1 RC) =GSTI F( | RC) +TEMPL( J, K)
CONTI NUE

CONTI NUE

CONTI NUE

MODI FY LOADS TO ACCOUNT FOR FI XED TEMPERATURE NODES

DO 146 J=1, NNPEL(| ELEM

| RONENDFEL( J)

IF (1 FFIX(I ROW.EQ 1) GOTO 108
DO 147 K=1, NNPEL( | ELEM

| COL=NDFEL( K)

I'F (I FFIX(1COL). EQ 1) THEN
FORCE( | ROW =FORCE( | ROW - TEMP1(J, K) * TFI XD( | COL)
ENDI F

CONTI NUE

CONTI NUE

CONTI NUE

CONTI NUE

SOLVE THE FI NAL SYSTEM USI NG PROFI LE SOLVER

SET DI AGONAL ELEMENTS COF GSTI F CORRESPONDI NG TO FI XED TEMPERATURE
NODES EQUAL TO UNITY AND THE FORCE VECTOR TO THE FI XED VALUE

DO 148 | =1, NPO N
IF (1FFIX(1).EQ 1) THEN
J=NDI AG(I)

GSTIF(J)=1.0
FORCE( | ) =TFI XD( 1)
TEMPR(1 ) =TFI XD( | )

ENDI F

CONTI NUE

SOLVE THE FI NAL SYSTEM USI NG PROFI LE SOLVER

CALL PROFAC ( MPRCF, MINT, NPO N, GSTI F, NDI AG)
CALL PROSOL ( MPROF, MINT, NPQI N, GSTI F, FORCE, TEMPR, NDI AG

CHECK FOR CONVERGENCE COF | TERATI ON

IF (I TER EQ 1) THEN
CALL L2NORM ( MINT, NPOI N, TNRML, TEMPR)
ELSE
CALL L2NORM ( MINT, NPOI N, TNRV2, TEMPR)
CONVG=ABS( TNRMV2- TNRML) / TNRMVR
| F (CONVG LE. TOLER) GOTO 250
TNRML=TNRMR
ENDI F
CONTI NUE
WRI TE (*, 251)
STOP 3333
CONTI NUE
FORMAT (//' ',' HEAT FLOW SOLUTI ON HAS FAI LED TO CONVERGE' )
RETURN
END

141



00000

0000

000

000

OO0 O

APPENDIX D V2TRED SOURCE CODE

Appendix D V2TRED Source Gode

SUBROUTI NE TRED( ME, TEMPL, TREF, NAGG)

khkkkhkkkhkhhkhhhhhkhhkhhhhhhhkhhhhhhkhkrx

This subroutine cal cul ates tenperature-rel ated reduction
coefficients for various concrete and steel material properties.

PARAMETER ( MELM=5000)
COMMON / REDUCTI ON TRC, TRS

REAL TRC(MELM 4), TRS( MVELM 4)

REAL TEMPL, TREF, TA

REAL KCL, KC2, KC3, KC4

REAL KSL, KS2, KS3, KS4

| NTEGER ME, NAGG

REAL Tl ER(13), VALUECL1(13), VALUEC12(13), VALUEC3( 13)
- VALUESL(13) , VALUES2( 13) , VALUES3( 13)

REAL | NTPLAT, BASE, BASE1, BASE2

Note: NAGG=1 for carbonate aggregates
NAGG=2 for silicious aggregates

TA=TEMPL+TREF
DATA TI ER/ 20, 100, 200, 300, 400, 500, 600,
- 700, 800, 900, 1000, 1100, 1200/

Concrete Conpressive Strength

DATA VALUECL1/1.0, 1.0, 0.97,0.91, 0. 85, 0. 74, 0. 60
- 0. 43,0. 27, 0. 15, 0. 06, 0. 02, 0. 0/
DATA VALUECL2/1.0, 1.0, 0. 95, 0. 85, 0. 75, 0. 60, 0. 45
- 0.3, 0. 15, 0.08, 0. 04, 0. 01, 0. 0/
I F (NAGG EQ 1) THEN
KCl=I NTPLAT( TA, TI ER, VALUEC11)
ELSE
KCl=I NTPLAT( TA, Tl ER, VALUEC12)
ENDI F
I F (KCL.LT.1.E-6) KCl=1.E-6

Concrete Tensile Strength

(TA. LE. 100) KC2=1.0

(TA. GT. 100) KC2=1.0- ( TA- 100)/500

NO TENSI LE STRENGTH WHEN TEMP. ABOVE 500
IF (KC2.LT.1.E-6) KC2=1.E-6

Concrete's Strain(ec') at which Stress reaches fc'

DATA VALUEC3/ . 0025, . 0040, . 0055, . 0070, . 010, . 015, . 025
- . 025, .025, . 025, . 025, . 025, 1. E6/
I F (NAGG EQ 1) THEN
I F (TA LE. 20) THEN
BASE=0. 0
ELSEl F (TA. LE. 805) THEN
BASE=- 1. 2E- 4+6. E- 6* TA+1. 4E- 11* TA* TA* TA
ELSE
BASE=12E- 3
END | F
BASE=I NTPLAT( TA, Tl ER, VALUEC3) - BASE
KC3=BASE/ VALUEC3( 1)
| F THERVAL STAI N NOT TO BE DEDUCTED THEN
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KC3=I NTPLAT( TA, TI ER, VALUEC3) / VALUEC3( 1)
ELSE

I F (TA LE. 20) THEN

BASE=0. 0

ELSEI F (TA. LE. 700) THEN

BASE=- 1. 8E- 4+9. E- 6* TA+2. 3E- 11* TA* TA* TA

ELSE

BASE=14E- 3

END | F

BASE=I NTPLAT( TA, Tl ER, VALUEC3) - BASE

KC3=BASE/ VALUEC3( 1)

| F THERVAL STAI N NOT TO BE DEDUCTED THEN:

KC3=I NTPLAT( TA, TI ER, VALUEC3) / VALUEC3( 1)
ENDI F
I F (KC3.LT.1.E6) KC3=1.E-6

Concrete Coefficient of Thermal Expansion
NOTE: FACTORS G VEN HERE MAKE WORKS THE FORMULA
e(T)=Delta_T(T)*Al pha(T)
=(T-20) *Al pha(20)*KSs4,
WH CH ORI G NALLY SU TS CONSTANT Al pha ONLY

BASELl: Al pha at 20' C for carbonate Aggregates
BASE2: Al pha at 20' C for Silicious Aggregates
BASE: Thermal Strain at TA' C

BASE1=6. E- 6+4. 2E- 11* 20* 20
BASE2=9. E- 6+6. 9E- 11* 20* 20
I F (NAGG EQ 1) THEN
| F (TA LE. 20) THEN
KCA=1.0
ELSEI F (TA. LE. 805) THEN
BASE=- 1. 2E- 4+6. E- 6* TA+1. 4E- 11* TA* TA* TA
KC4=BASE/ ( TA- 20) / BASEL
ELSE
BASE=12E- 3
KC4=BASE/ ( TA- 20) / BASEL
END | F
ELSE
I F (TA LE. 20) THEN
KC4=1.0
ELSEI F (TA. LE. 700) THEN
BASE=- 1. 8E- 4+9. E- 6* TA+2. 3E- 11* TA* TA* TA
KC4=BASE/ ( TA- 20) / BASE2
ELSE
BASE=14E- 3
KC4=BASE/ ( TA- 20) / BASE2
END | F
ENDI F

Rei nforcenent Yield Stress

DATA VALUES1/1.0,1.0,1.0,1.0,1.0,0.78,0.47,
- 0. 23,0.11, 0. 06, 0. 04, 0. 02, 0. 0/

KS1=I NTPLAT( TA, Tl ER, VALUES1)

IF (KS1.LT. 1. E-6) KS1=1.E-6

Rei nforcement Utimate Strength

DATA VALUES2/1.0,1.0,0.81,0.61,0.42,0. 36, 0. 18,
0.07,0.05,0.04,0.02,0.01, 0.0/

KSZ | NTPLAT( TA, Tl ER, VALUES2)

IF (KS2.LT.1. E-6) KS2=1.E-6

Rei nf orcement Modul us of Elasticity
DATA VALUES3/ 1.0, 1.0,0.90,0.80,0.70,0.60,0. 31,
0.13,0.09,0.07,0.04,0.02,0.0/

KS3 | NTPLAT( TA, Tl ER, VALUES3)
I F (KS3.LT.1. E-6) KS3=1.E-6
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Rei nf orcenent Coefficient of Thernal Expansion (Al pha)
NOTE: FACTORS G VEN HERE MAKE WORKS THE FORMULA
e(T)=Delta_T(T)*Al pha(T)
=(T- 20) * Al pha(20) *KS4
WH CH ORI G NALLY SU TS CONSTANT Al pha ONLY
BASE1: Al pha at 20'C
BASE: Thermal Strain at TA'C

BASE1=1. 2E- 5+0. 8E- 8* 20

I F (TA LE. 20) THEN
KS4=1.0

ELSEI F (TA. LE. 750) THEN
BASE=- 2. 146E- 4+1. 2E- 5* TA+0. 4E- 8* TA* TA
KS4=BASE/ ( TA- 20) / BASEL

ELSEI F (TA. LE. 860) THEN
BASE=11. E- 3
KS4=BASE/ ( TA- 20) / BASEL

ELSE
BASE=- 6. 2E- 3+2. E- 5*TA
KS4=BASE/ ( TA- 20) / BASEL

END | F

TRC( ME, 1) =KCL
TRC( ME, 2) =KC2
TRC( ME, 3) =KC3
TRC( ME, 4) =KCA
TRS( ME, 1) =KS1
TRS( ME, 2) =KS2
TRS( ME, 3) =KS3
TRS( ME, 4) =KS4

RETURN
END

THI'S FUNCTI ON WORKS EVEN WHEN TI ER S NO LESS THAN 13
REAL FUNCTI ON | NTPLAT( TEM TI ER, VALUE)
REAL TEM TI ER(13), VALUE( 13)
| NTEGER | NDEX
REAL DIF
DO 1 | NDEX=1, 13
| F (TEM LE. TIER(1)) THEN
| NTPLAT=VALUE( 1)
RETURN
END I F
I'F (TEM LE. TI ER(| NDEX)) THEN
DI F=( VALUE( | NDEX- 1) - VALUE( | NDEX) ) / ( TI ER( | NDEX) - TI ER( | NDEX- 1))
| NTPLAT=VALUE( | NDEX- 1) - DI F* ( TEM TI ER( | NDEX- 1) )
RETURN
END I F
IF (TEM GE. TIER(13)) THEN
| NTPLAT=VALUE( 13)
RETURN
END I F
CONTI NUE
END
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