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AAbbssttrraacctt  
The need to incorporate fire loads into reinforced concrete structural design has long been 

recognized, and the traditional design method for structural fire resistance has been widely 

practiced by engineers mainly because of its simplicity. To simulate the structure’s 

response to thermal loads, this research develops and implements a 2D nonlinear finite 

element transient analysis for reinforced concrete structures subjected to high temperatures. 

The proposed computational scheme takes into account time-varying thermal loads, heat-

of-hydration effects, and temperature-dependent material properties. Algorithms for 

calculating the closed-form element stiffness for a quadrilateral element with a fully-

populated material stiffness are also developed. Then, the capability of a 2D nonlinear 

finite element transient thermal analysis is implemented into program VecTor2©, a 

nonlinear analysis program for 2D reinforced concrete membranes. 

The results obtained from four numerical tests indicate that the proposed computational 

scheme and the implemented codes are accurate and reliable. 
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CChhaapptteerr  11      IInnttrroodduuccttiioonn  

1.1 Background 

Fire is one of the extreme loadings that can act on reinforced concrete structures. The need 

to incorporate this extreme loading into structural design has long been recognized, and the 

traditional design method for structural fire resistance has been widely practiced by 

engineers mainly because of its simplicity. However, the investigation of the World Trade 

Centre disaster by the BPAT (Building Performance Assessment Team) indicated that the 

fire issues were most crucial [1] in the collapse of the twin towers. Other than that, 

reinforced concrete structures are commonly exposed to thermal loads as the result of the 

design function of the structure, ambient conditions, heat of hydration, or exposure to fire 

[2]. Therefore, the research on the advanced analysis and design of reinforced concrete 

structures subject to thermal loads has attracted much attention recently. 

To simulate the structure’s response to various thermal loads, numerical techniques are 

normally required because the experimentation is usually too involved and expensive and 

the governing Partially Differential Equations (PDEs) are too complex for analytical 

solutions to be obtained. The numerical technique which has achieved the greatest degree 

of popularity and success is the finite element method. 
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1.2 Aims and Objectives 

To understand the response of structures to thermal loads, one will have to consider some 

consequent analysis stages. First of all, the thermal actions originate from increases in 

temperature and can be time-varying. They have to be differentiated from mechanical 

loads. Next, the temperature distribution has to be calculated according to the subjected 

thermal actions. Again, one will have to consider the time effect in the transient heat 

analysis. Once the temperature distribution along the structure is known, one can evaluate 

the mechanical behaviour of the heated structure. Notably, some mechanical and thermal 

properties of material are highly temperature dependent, and some effects, like spalling and 

creep, could be of much importance in the structural analysis. Finally, one can compare the 

fire resistance factors or fire safety indices to predict the response. 

The main purpose of this research is to develop and implement a 2D nonlinear transient 

conduction FE analysis for reinforced concrete structures subjected to high temperature. 

Basically, it is a thermal analysis in which the time-varying thermal loads and temperature-

dependent thermal properties are taken into account. Some subroutines will be developed 

and then further embedded into the existing main-program VecTor2, a nonlinear analysis 

program for 2D reinforced concrete plates. Taking advantage of VecTor2’s built-in 

realistic constitutive models, mainly based on the Modified Compression Field Theory [3] 

and Distributed Stress Field Model [4], one can obtain the complete response of all 

members within the structure, including external restraint forces, internal stresses, cracking 

development, deflections etc. Although currently not included, models to reflect the effects 

of spalling and thermal creep might be incorporated into the existing procedure without 

many difficulties. 
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1.3 Scope and Organization 

The focus of this research is in the following areas: 

• A systematic investigation will be carried out to explore the potential of thermal 

analysis of concrete structures, including the studies on fundamental theories of the 

thermal conduction analysis. 

• A reliable finite element computational scheme will be developed, which involves 

temperature-dependent thermal properties and time-varying thermal loads. 

• Program codes will be developed and modified, including V2HEAT (for transient heat 

flow analysis), V2TRED (for material property temperature-dependence), and V2STIF (for 

stiffness matrix calculation). 

• Some corroboration problems will be tested. 

This thesis is presented in six chapters as illustrated in Fig. 1.1 below. 

Figure 1.1 Structure of the Thesis 

Chapter 1 Introduction 

Chapter 2 Literature Review on Various Aspects 
of 2D Nonlinear Conduction Analysis 

Chapter 3 Computational Scheme 

Chapter 6 Conclusions and Future Research Prospects 

Chapter 4 Code Implementation and Embedment into VecTor2 

Chapter 5 Numerical Corroboration 
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CChhaapptteerr  22      LLiitteerraattuurree  RReevviieeww  
Heat transfer is concerned with the physical processes underlying the transport of thermal 

energy due to a temperature difference or gradient. Conservation principles of mass, 

momentum, and energy always lead to differential equations (in a more general sense, 

integral equations). Because of those complex mathematical equations, numerical methods 

are usually preferred, instead of solving problems analytically. 

Of the several means by which heat is transferred, conduction is probably the most widely 

understood and the most familiar. In the following sections, some characteristics of the 

numerical heat conduction analysis will be described and reviewed, namely, (i) general 

background on heat conduction analysis; (ii) underlying FE spatial approximation; (iii) 

underlying FD temporal descretization; (iv) temperature-dependent material properties; 

and (v) heat of hydration. 

2.1 General Background on Heat Conduction Analysis 

In the field of continuum mechanics, motions of a continuum can be described by either 

the Lagrangian approach (also called material description) or Eulerian technique (also 

known as spatial description). In the former description, individual particles (identified by 

material coordinates) are tracked with the passage of time. Alternatively, one can observe 

the changes in time at fixed positions in the space (identified by spatial coordinates), which 

is the Eulerian description. While the Lagrangian description is often used in solid 

mechanics, the Eulerian description dominates [5] in the field of fluid mechanics including 
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heat transfer. Consequently, the governing equations presented here will be based on the 

Eulerian description in which the current (heat) flow field is fixed at the reference 

coordinates rather than tracing the particles downstream. 

2.1.1 Classification of Partial Differential Equations (PDEs) 
The general form of the two-dimensional second-order PDEs can be expressed as: 
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where the coefficients A, B, C, D, E, and F can be functions of both independent variables 

(coordinates x and y or time t) and dependent variables (temperature T). According to the 

physical meaning in the propagation of flow’s disturbance and characteristics, Sneddon [6] 

classified Eq. (2.1) into three categories: 
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2.1.2 Governing Equations of Heat Conduction and Their Nature 
Conduction problems are generally divided into two main categories: steady-state and 

transient (or unsteady-state) conduction. The former relates to the condition where the 

temperatures at all nodes are independent of time while the latter indicates the situation 

where energy storage occurs and the temperature distribution varies with time. Those two 

categories of problems are usually treated separately. 
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• Steady-State Conduction: 

The governing equation in terms of Cartesian coordinates for an isotropic material in 

steady-state problems is of the form: 

0=+∇⋅∇ QTk )(  (2.3) 

where, Q is volumetric heat resource and k is the material conductivity. 

Two well-known equations of elliptic type (c.f. Eq. (2.2)) are: 
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Both equations above apply to the temperature distribution for constant-property 

conduction while Eq. (2.5) reflects distributed heat source present in the problem domains. 

• Transient Conduction: 

The governing equation for transient problems is given by: 

0=
∂
∂

−+∇⋅∇
t
T

cQTk ρ)(  (2.6) 

where the time t is involved as an independent variable. ρ  and c are the material’s density 

and specific heat respectively. 

Under the assumption of constant thermal properties, Eq. (2.6) leads to: 
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where α  is so-called material diffusivity. 

By comparing Eq. (2.7) and the generalized form in Eq. (2.2), one can see that the transient 

two-dimensional conduction problem possesses a parabolic nature with respect to its time 

dependence and an elliptic behaviour with respect to the spatial coordinates. 

2.1.3 Initial and Boundary Conditions of Heat Conduction 
Correct application of boundary conditions is essential to the convergence and accuracy of 

numerical solutions. Generally, the number of boundary conditions required is determined 

by the order of the highest derivatives appearing in each independent variable in the 

governing PDEs. For example, a transient process governed by a first derivative in time 

(e.g. Eq. (2.6)) will require one initial condition in order to carry out the time integration. 

Also, two spatial boundary conditions are needed for each coordinate in which a second 

derivative appears. 

The initial temperature field can be specified as: 

Ω== in0 0 ),(),,( yxTtyxT  (2.8) 

Spatial boundary conditions are normally of the following types: 

• Dirichlet (or essential) boundary conditions: TyxTT Γ= on),(  (2.9) 

• Neumann (or natural) boundary conditions: qnq
n
T

k Γ=
∂
∂

− on  (2.10) 
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• Cauchy (or mixed) boundary conditions: ),(),(),( yxf
n
T

yxbTyxa =
∂
∂

+  (2.11) 

where, 
y
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n
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r

 with unit vector n
r

 normal to the boundary Γ  and 

its direction-cosine components expressed by xn  and yn . T  and q  are the prescribed 

values of temperature and heat flux on the corresponding boundaries TΓ  and qΓ . 

2.2 Underlying Finite Element Spatial Approximation 

A finite element (FE) method is a mathematical procedure for satisfying a partial 

differential equation in an average sense over a finite element. Various methods exist but 

all of them require that an integral representation of the PDE be constructed. The FE 

method is attractive because of its integral formulation and the use of unstructured grids, 

which are preferred [7] for flows. In the following sections, the construction of such 

integral formulations and commonly used 2D finite elements will be briefly described. 

2.2.1 Integral Representations 
The differential and integral forms of the governing equations provide alternate starting 

points for a numerical solution. The differential equations apply locally in an appropriate 

time-space continuum while global forms may be obtained by integrating the differential 

equations over a suitable region of time and space. Within the FE methods, it is necessary 

to transform the governing equation from its differential form into an equivalent integral 

one. This can be accomplished in two different ways: by classical variational principle or 

by the more general weighted-Galerkin residual method. 
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Consider the governing equations for an isotropic material in transient problems: 

Ω=
∂
∂

−+∇⋅∇= in0
t
T

cQTkTA ρ)()(  (2.12.a) 

with the boundary conditions defined as: 

TTTTB Γ=−= on0)(  (2.12.b) 

     or qq
n
T

k Γ=+
∂
∂

= on0  (2.12.c) 

After dividing the continuum into a finite number of elements, the behavior of which is 

specified by a finite number of nodal parameters a, the FE method approximates the 

solution in the form as: 

Na==≈ ∑
i

ii
h aNTT  (2.13) 

where N are shape functions prescribed in terms of independent variables (such as the 

coordinates) and usually defined locally for elements. 

Because of the virtual work principle and the property of definite integral requiring that the 

total be the sum of the parts, that is, 

∑ ∫∫
ΩΩ

Ω=Ω
e

dd )()(  (2.14.a) 

and 

∑ ∫∫ =
e

dd
GG

GG )()( , (2.14.b) 
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It can be shown that the properties of such discrete systems would be recovered if the local 

approximation in Eq. (2.13) can be cast in an overall integral form: 

∑ ∫∑ ∫∫∫
ΓΩΓΩ

Γ+Ω=+Ω
e

eh

e

ehhh

ee

dTBdTAdTBdTA )()()()( G  (2.15) 

When developing the weighted-Galerkin residual formulation given above, one important 

theorem known as Gauss’s theorem is often used: 

∫∫ ⋅=⋅∇
sv

dsrndvr
rrr

 (2.16) 

For example, in integrating Eq. (2.7) over a non-deforming two-dimensional region, by 

using the above Gauss’s theorem one can have (note that exchangeable consequence 

between differential and integral operations): 

∫∫∫
ΩΓΩ

Ω+Γ
∂
∂

=Ω
∂
∂

Gdd
n
T

Td
t

α  (2.17) 

where the α  is taken as constant. Physically, the left side of this expression represents the 

increase rate of the area integral of T, while the terms on the right side denote, respectively, 

the net increase of T by diffusion and volumetric sources. Eq. (2.17) may be integrated in 

time, and then the need for appropriate initial and boundary data (conditions) is apparent. 

Thus, FE methods can be viewed as satisfying a differential equation in some average 

sense over a region of space, and thus as providing regional integral approximation to the 

original differential equations. Finite Difference (FD) methods, on the other hand, are 

usually regarded as local point-wise approximation methods based on differential 

equations. 
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2.2.2 Commonly Used 2D Finite Elements and Their Shape Functions 
In two dimensions, the region is usually discretized by discrete triangular, rectangular or 

even more general quadrilateral elements. Since the choice of a particular coordinate 

system influences the amount of algebra required in the formulation, it needs to be chosen 

wisely [8]. Consider the following: 

• Mesh information in this analysis (sub-program) is directly obtained from the 

remaining main-program VecTor2. As a result, nodal coordinates, element connections as 

well as their numberings are inherited from the existing code; 

• The construction of shape functions that satisfy consistency requirements for linear 

elements with straight-lined boundaries becomes straightforward. As a result, the concept 

of isoparametric elements is circumvented; 

• Integrals that appear in the expressions of the element coefficient matrices and 

consistent nodal force vector can be carried out in closed form. As a result, numerical 

quadrature is avoided in the computational scheme. 

Given these facts, the standard rectangular Cartesian coordinates are chosen for both the 

employed bilinear quadrilateral and linear triangular elements when constructing the 

element shape functions as below. Since no transformations between the coordinate 

systems are involved, the element matrices can be derived in such a way that is quite 

different [9] from that commonly reported for isoparametric elements. 

Despite being included in the more general case of four-node quadrilateral element, the 

formulation for the rectangular element will be reported separately since they are 

advantageous in situations where it can be used. 
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2.2.2.1 Linear Triangular Element 

For the typical linear triangular element shown in Fig. 2.1, it is common practice to resort 

to an area coordinate system [9] when formulating the shape function since the shape 

functions are simply the area coordinates themselves. That is, 

A
A

N i
ii == ξ  (with counter-clockwise arrangement, i.e. 321 ,,=i ) (2.18) 

Figure 2.1 An schematic triangular element 

Note that the area coordinates ( iξ , 321 ,,=i ) are not independent because their sum is equal 

unity. Substituting the area coordinate into Eq. (2.18), one can easily derive the shape 

functions in Cartesian coordinates as follows: 
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2.2.2.2 Rectangular Element 

To construct shape functions as well as element coefficient matrices for a rectangular 

element as shown in Fig. 2.2, one might be tempted to use a polynomial expansion in terms 

of the standard Cartesian coordinates. A Lagrange polynomial is frequently chosen since 

the desired interpolation functions can be constructed simply from a tensor product of the 

one-dimensional counterparts for the x and y directions respectively. 

Figure 2.2 A rectangular element in Cartesian coordinates 

Consider the linear variation of the nodal displacement vector u in two dimensions: 

ii
e uN=)(u  ( 4321 ,,,=i ) (2.20) 

with 

)()( yx LLN 111 = , )()( yx LLN 122 = , )()( yx LLN 223 = , )()( yx LLN 214 =  (2.21) 
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ax /=ξ , by /=η  (2.23) 

2.2.2.3 Four-Node Quadrilateral Element 

The natural coordinates (also called quadrilateral coordinates) for a quadrilateral element 

are ξ  and η , which are illustrated in Fig. 2.3 for a straight-sided quadrilateral. 

Figure 2.3 A bilinear quadrilateral element 

The shape functions for the above 4-node isoparametric quadrilateral element are: 

))((),( iiiN ηηξξηξ ++= 11
4
1

 (2.24) 

where ),( ii ηξ  are the nodal coordinates in the natural pattern ( [ ]11,),( −∈ηξ ). Note that 

these functions in Eq. (2.24) do vary linearly on quadrilateral lines, but are not linear 

polynomials due to the extra term ξη , which is not required for the purpose of linear-

complete polynomials. This traditional natural-coordinate-based isoparametric shape 

function will only be used when developing the closed-form element matrix formulation, in 

which the entries of matrices are eventually derived in terms of nodal rectangular Cartesian 

coordinates. 

1 
2 

3 
4 

 



Chapter 2 Literature Review 

 15 

2.3 Underlying Finite Difference Temporal Discretization 

In transient problems, it will be shown that the resultant equation is a set of first-order 

ordinary differential equations with respect to the independent variable time t. 

Consequently, the solutions must proceed with increasing time until the results are 

obtained over a required time level or until a particular temperature level (such as the 

steady state) is attained. 

The simplest and most common procedure for such a transient analysis is to use a two-

level finite difference formulation in time, which interpolates time between two successive 

levels n  and 1+n . That is, 

t
TT

t
T nn

∆
−

=
∂
∂ +1  (2.25) 

As it will be shown in Chapter 3, in the case of temperature-dependent properties, one 

must decide at what time level to evaluate the temperature terms appearing in the 

coefficient matrices in the resultant equations. Similarly, one can use two-point (linear) 

interpolation formula as follows: 

11 ++ +−= nnrn rTTrT )(  (2.26) 

By changing the value of r from 0 to 1 in Eq. (2.26), different classical methods in the 

literature can be identified as follows: 
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• 0=r : the Euler method 

The Euler method is a forward finite difference technique. The advancement requires no 

iteration due to its explicit nature, but the time step is restricted by stability considerations 

and may be further restricted by nonlinear problems. 

• 1=r : the Laasonen method 

This is a backward finite difference technique with a fully implicit nature. 

• 21/=r : the Crank-Nicholson method 

The Crank-Nicholson is a center finite difference technique. This is a common choice 

based on accuracy considerations [10], with the time discretization being second-order 

correct. 

• 32 /=r : the Galerkin method 

Instead of the finite difference technique, if one employs a Galerkin-weighted residual 

method with linear 1D interpolation function in time dimension, the value of r in Eq. (2.26) 

could be proven [11] to be 32 / . While the final formulation looks similar to those from 

FD approximations, the Galerkin scheme exhibits considerable computational advantages. 

It is unconditionally stable and gives less oscillatory errors than the most accurate Crank-

Nicholson scheme. 
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2.4 Temperature-Dependent Material Properties 

While concrete is generally a non-homogeneous, anisotropic medium composed of 

particles of aggregate held together by hydrated cement paste, it can be treated as a 

homogeneous isotropic material in heat analysis. Despite all that, the temperature 

dependence of thermal properties has an especially great effect on heat transfer analysis. 

Moreover, the temperature-dependence of the mechanical properties will significantly 

affect the follow-up stress and deformation analyses. 

2.4.1 Thermal Properties 
From the general transient governing equation (i.e. Eq. (2.6)), one can see that, in addition 

to physical property density ρ , the two thermal properties involved in the heat analysis are: 

• Thermal conductivity k: heat flux transmitted through a unit area of a material under a 

unit temperature gradient. This measures the ability of the material to conduct heat. 

• Specific heat c: quantity of heat needed to raise the temperature of a unit mass of a 

material by one degree. This is a measure of the heat capacity of a material. 

The temperature-dependent thermal and physical properties make heat analysis nonlinear 

since the coefficient matrices in the final resultant equation are not constant but dependent 

on the temperature, which in turn is the unknown to be solved. 

While simple problems might be tackled by using the Kirchoff transformation technique 

[12], most resultant computational schemes will lead to a tremendous number of 

computations and consequently are quite inefficient [13]. Furthermore, the use of the 
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Kirchoff transformation requires reverting back to the original physical temperature after 

solving the equations and this involves the integration of the transformation equations. 

Therefore, it is more convenient and simpler to consider the case of variable thermal and 

physical properties directly in the construction of relevant governing equation and to solve 

the equation in an iterative manner. Whether properties are functions of temperature or in 

the form of tiered data companied by interpolation, they give rise to a nonlinear algebraic 

equations system and the associated complexity is solving the equations. Fortunately, such 

difficulties can be reasonably bypassed by assigning an average value of each property 

within each finite element at the current iteration step to simplify the formulation. The 

detailed derivation will be described in Chapter 3. Therefore, the only task remaining here 

is to establish a database from which one can read the values of those temperature-

dependent properties at different temperature ranges. 

Since thermal properties at high temperature are quite difficult to obtain and there are very 

few data available in the literature (e.g. reference [14-15]), their variation with temperature 

employed in this proposed implementation scheme are based on the Eurocode and are 

briefly given below: 


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where )(Tρ  is the density at temperature )( CT o ; and 
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
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where )(Tc  is the specific heat at temperature )( CT o . 

Concerning the conductivity k, the initial value at a reference temperature ( Co20 ) can be 

used in the interpolation between the upper and lower limits given by Eurocode: 

2100010701002451002 )/(.)/(.. TTk upper +−=  ( KmW / ) (2.29.a) 

2100005701001360361 )/(.)/(.. TTk lower +−=  ( KmW / ) (2.29.b) 

Also, the experimental data provided by Shin et al. [14], given in Table 2.1, can be used as 

a back-up choice in the relative codes. 

Temperature 
( C° ) 

Density ρ  
( 3−mkg ) 

Conductivity k 
( KmW / ) 

Diffusivity α  
( 12610 −−× sm ) 

Specific heat c 
( kgKJ / ) 

20 2252.43 2.194 0.8824 1104 

500 2104.97 1.283 0.4505 1354 

700 2077.71 1.136 0.4031 1357 

900 2057.44 1.027 0.4170 1199 

Correlative 
function of T 

6222593980000018960 2 ... +−= TTρ  
242720025690636471 2 ... +−−= TTEk  

62 10909100013700716399 −×+−−= )...( TTEα  
αρ/kc =  

Table 2.1 Thermal Properties Given by Shin et al. [14] 

Variation of these modification factors given above are plotted in Fig. 2.4. 
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Figure 2.4 Thermal factors at high temperatures 
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2.4.2 Mechanical Properties 
Once the transient temperature distribution is obtained, the structural response can be 

determined in which the material mechanical properties will dominate. Both strength and 

stiffness deteriorate significantly under evaluated temperatures. In addition, continuity 

thermal stresses are induced in indeterminate structures due to thermal expansion and are 

heavily dependent on structural effective stiffness [16]. 

The mechanisms governing the chemical reactions and physical changes inside reinforced 

concrete, and how they affect the mechanical properties, are complicated. Little 

experimental data is available (e.g. reference [17-18]) and, surprisingly, they are quite 

different from each other. Therefore, the values for normal-weight concrete and hot-rolled 

steel in Eurocode are employed in the calculation of the reduction factors. A short 

description of these data, and the corresponding calculated factors in VecTor2, are given 

below. 

Some characteristics of concrete and reinforcing steel at evaluated temperatures are shown 

in Table 2.2. The reduction factors for those properties are directly given with the 

exception of the value of '
cε  which includes thermal strains. 

If the tensile strength of concrete is to be taken into account, in the absence of more 

accurate information, the following equation can be used in the calculation of this 

reduction factor, according to Eurocode. 


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)(  (2.30) 
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concrete steel 
siliceous 

aggregates carbonate aggregates temperature 
'
,

' / 20cc ff  '
cε  '

,
' / 20cc ff  '

cε  

20
yu ff /  20

uu ff /  
20

ss EE /  

20 1.00 0.0025 1.00 0.0025 1.0 1.0 1.0 
100 1.00 0.0040 1.00 0.0040 1.0 1.0 1.0 
200 0.95 0.0055 0.97 0.0055 1.0 0.81 0.90 
300 0.85 0.0070 0.91 0.0070 1.0 0.61 0.80 
400 0.75 0.0100 0.85 0.0100 1.0 0.42 0.70 
500 0.60 0.0150 0.74 0.0150 0.78 0.36 0.60 
600 0.45 0.0250 0.60 0.0250 0.47 0.18 0.21 
700 0.30 0.0250 0.43 0.0250 0.23 0.07 0.13 
800 0.15 0.0250 0.27 0.0250 0.11 0.05 0.09 
900 0.08 0.0250 0.15 0.0250 0.06 0.04 0.07 

1000 0.04 0.0250 0.06 0.0250 0.04 0.02 0.04 
1100 0.01 0.0250 0.02 0.0250 0.02 0.01 0.02 
1200 0.00 - 0.00 - 0.00 0.00 0.00 

Table 2.2 Some material properties of concrete and reinforcing steel 

In the Eurocode, the thermal expansion coefficients have the variation as shown in Fig. 2.5. 

Figure 2.5 Thermal coefficients of concrete and steel 
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It can be seen that for both concrete and steel, thermal expansion ceases altogether at some 

levels of temperature. Instead of giving explicit thermal expansion coefficients, the 

Eurocode provides thermal strains within various temperature ranges directly as thermal 

elongation is believed to develop progressively. 

• Concrete with siliceous aggregate: 





≤<×

≤×+×+×−
=
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−−−
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CTTT
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oo

o

12007001014
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31164 ..
)(ε  (2.31.a) 

• Concrete with carbonate aggregate: 
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o
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• Reinforcing steel: 





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)(ε  (2.32) 

Note that the above thermal strains are relative to the length at Co20 . Thus, with a 

reference at Co20  the reduction (increasing in this case) factor could be calculated at: 

TT

TTTTT
Tf

,, )(
)/()(

)(
/)(

)(
)(

)(
20

20
2020 ε

ε
ε

ε
α
α −

=
∆

==  (2.33) 

Variation of these modification factors given above are plotted in Fig. 2.6 and 2.7 for 

various concrete and steel, respectively. 
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Figure 2.6 Mechanical modification factors for various concrete 
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Figure 2.7 Mechanical modification factors for steel 
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2.5 Heat-of-Hydration Model 

The hydration of cement within concrete is an exothermic process. Thermal expansion, and 

its induced effects such as thermal cracking, may reach a significant level in early age 

concrete, particularly in massive structures. 

The micro-structural development occurring during the hydration of cement is complicated. 

To this date, precise knowledge of the mechanisms and kinetics of the hydration reactions 

between cement and water requires further investigation [19]. In addition, various factors, 

including curing conditions (temperature and age), type of cement, mix proportion of the 

concrete (such as water/cement ratio), as well as environmental interactions, can influence 

the rate and the total heat of hydration within concrete structures. Thus, it seems 

appropriate to treat the heat generated per unit volume during hydration as a material 

property [20]. At the same time, it has become clear that age-dependent material properties 

must be uniquely [21] tied to the degree of hydration, in turn relating to maturity value in 

the field of the maturity method [22]. 

Determination of concrete maturity values requires the knowledge of its time-temperature 

history. The maturity method is viewed as a successful technique which takes into account 

the varying effects of concrete temperature and curing time on concrete strength 

development. While the maturity method has been used conventionally to predict concrete 

strength gain during curing, its application to concrete technology can go far beyond that 

[23]. In this sense, it can be applied to any concrete property related to the extent of cement 

hydration since the maturity method is based on cement hydration kinetics. 
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In the application of the maturity method, maturity models (or functions) are used to 

convert the time-temperature curing history of concrete into maturity values. Based on 

accuracy and wider range of temperature conditions, the best known model is the one 

proposed by Freiesleben-Hanson and Pedersen [24]. Unlike the early models proposed by 

Saul [25] and Rastrup [26], this model is based on the Arrhenius equation, which describes 

the effect of temperature on the rate of chemical reactions, and is of the form: 

∫
−

=
t

k

a dt
RT

E
kTtM

0

)exp(),(  (2.34) 

where, 

R is the universal gas constant being equal to )/(. KmolJ ⋅3148 . 

kT  is the actual temperature of concrete in degree Kelvin. 

aE  is conventionally an apparent activation energy in molkJ / . It is recently reported [21-

25] that aE  is not a true activation energy but, rather, provides a temperature sensitivity 

factor for the property interested. While the CEB-FIP code uses an average value and 

ASTM recommends a range, the method accepted by many researchers is of the form: 





°<−+

°≥
=

CTT
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TE
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c
c 2020471533

20533

)(..

.
)(  (2.35) 

k is typically a temperature-dependent rate constant for compression strength development, 

but in this case, for degree of hydration development. By using a parabolic-dispersion 

model (the one proposed by Knudsen [27] is commonly employed) to fit the experimental 
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data, the curve representing degree of hydration versus time can be obtained. It is 

important to point out that the k value is also property-dependent while it is classically 

related the compression strength development. 

Since the rate constant is affected by temperature, an equivalent quantity called the 

equivalent time et  is introduced and defined as follows: 

t
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t
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0 273
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1
exp  (2.36) 

In this way, time values at which the maturity values, in turn the degree of hydration, have 

been measured at other temperature can be converted to equivalent times at the reference 

temperature, in hopes of obtaining a single curve for degree of hydration versus equivalent 

time. 

Now one can establish the model to simulate the relationship between the rate of heat of 

hydration and degree of hydration. There are some models developed in the past decade 

[28-29]. While numerous efforts have been made to include as many realistic features into 

those models as possible, only time will tell if the underlying assumption are indeed 

reasonable. The volumetric heat of hydration in the model, which is based on the work by 

Wang and Dilger [28] for ordinary Portland cement, is of the form: 
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 (2.37) 

where et  is the equivalent maturity time of concrete in hours. 
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While it looks like one can proceed with heat analysis once the above Q is determined, the 

implementation of heat analysis considering the heat of hydration remains unsolved mainly 

due to following three facts: 

1. Some influencing factors, like water/cement ration and cement content, are highly 

situation dependent. An accurate model requires a complete data base for which 

experimental works will be involved. This project mainly focuses on analytical 

computation. 

2. The environmental interactions during heat analysis, technically termed as 

boundary conditions in FE analysis, will play an important role. That energy 

transferred between the boundary and the environment is mainly due to convection, 

thermal irradiation as well as solar radiation. However, only heat conduction is 

involved in this work. 

3. As mentioned previously, the material properties of concrete at early ages will be 

highly age-dependent. Thus, the absence of thermal properties for heat analysis and 

mechanical properties for the follow-up analyses, such as stress and crack 

evaluation, makes this temperature calculation (if done) less reliable and useful. 

Although no implementation of heat of hydration will be realized in this project, the 

formulation provided in the proposed computational scheme (described in Chapter 3) does 

include this aspect for the future possible development. 
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CChhaapptteerr  33      CCoommppuuttaattiioonnaall  SScchheemmee  
Although the actual derivation is based on a Taylor expansion, Finite Difference (FD) 

approximation is based on local, discontinuous shape functions [7] with collocation 

weighting applied from the weighted-residual method viewpoint. Its conceptual simplicity 

and ease of implementation entail the loss of accuracy. Moreover, its dependency on a 

structured grid significantly restricts the application range since one-to-one mapping 

between the physical domain and computational domain is the key feature of such a grid. 

The reasons for the success of the FE method are well known [30]: local characteristic of 

approximation, flexible ability of simulation of complex geometrical domains, and 

existence of a large set of approximation schemes adapted to various problems but 

embedded in a unified formulation. The FE method requires only an unstructured grid, in 

which nodes and grid cells (elements) are quasi-random ordered. That is, unlike the 

structured grid, neighbouring cells or nodes cannot be directly identified by their indices. 

In addition to its flexibility, the unstructured grid brings in the much easier adaptation of 

mesh (mesh refinement or mesh regeneration) to the solution domain. Therefore, the FE 

method is chosen in the current computational scheme. 

3.1 Governing Equations with Appropriate Boundary 
Conditions 

Due to the additional dimension introduced by the time variable, the numerical procedures 

for transient differential equations are quite different from those for steady-state problems. 
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Therefore, they are usually treated separately. For the purpose of description, some 

equations in Chapter 2 will be repeated here. 

The governing equation in terms of Cartesian coordinates for an isotropic material in 

steady-state problems is of the form: 

0=+∇⋅∇ QTk )(  (2.3) 

while the one for transient problems is given by: 

0=
∂
∂

−+∇⋅∇
t
T

cQTk ρ)(  (2.6) 

To solve these equations, one has to specify the initial temperature distribution (for 

transient problems only) and the boundary conditions which might be time dependent and 

spatially varying. 

The initial condition determines the state of the temperature field at time 0=t  and can be 

expressed as: 

Ω== in0 0 ),(),,( yxTtyxT  (2.8) 

Spatial boundary conditions are normally of the following types: 

• Dirichlet (or essential) boundary conditions: TyxTT Γ= on),(  (2.9) 

• Neumann (or natural) boundary conditions: qnq
n
T

k Γ=
∂
∂

− on  (2.10) 
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• Cauchy (or mixed) boundary conditions: ),(),(),( yxf
n
T

yxbTyxa =
∂
∂

+  (2.11) 

The Dirichlet boundary conditions can be exactly treated by modifying the coefficient 

matrix in the global finite element equations, reflecting the specified value of nodal 

solutions. The specification of Neumann boundary is a unique [5] feature in FE method, in 

the sense that the Neumann boundary conditions are explicitly available within the FE 

formulation (as shown in later section). For elliptic (with respect to spatial discretization 

for heat conductions) equations, Cauchy boundary conditions (usually corresponding to 

convective conditions) are not appropriate in FE analysis since they prescribe both the 

function and its derivative at one spatial location. 

3.2 Sequential Steps in the Computational Scheme 

This section describes the sequential steps require to derive the final formulation of the 

finite element analysis by using a standard Galerkin procedure. Mainly, one multiplies the 

governing equation by a weighting function followed by integrating by parts and making 

use of Green’s theorem in the plane. After that, one has to approximate the temperature 

field with the interpolation (shape) function chosen and specify the weighting function as 

the shape function in the integral statement. Once the element coefficient matrices are 

assembled, one can further rewrite the equation in a matrix system. Thus, particular 

solution procedures can be applied in solving the resultant equation systems corresponding 

to the steady-state and transient problems, respectively. A detailed step-by-step 

computational scheme is summarized below. 
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3.2.1 Element Discretization 
In this step, one discretizes the physical domain into elements which are discrete spatial 

regions from the subdivision of a continuum. The choice of element, including type, 

numbering and allocation, involves a trade-off between convenience and complexity. In 

this scheme, standard triangular, rectangular, and the more general 4-node quadrilateral 

elements are chosen since the mesh information is directly obtained from the existing code 

in program VecTor2. 

3.2.2 Integral Statement Establishment 
In this step, one will need to write the equivalent integral statement for Eq. (2.6) and Eq. 

(2.10) by assuming that the essential boundary condition in Eq. (2.9) is automatically 

satisfied by the proper choice of the function hT  in Eq. (2.13). 

One can use the Galerkin-weighted residual method to readily get the strong form 

statement as: 

0G =



 +

∂
∂

+Ω





∂
∂

−+∇⋅∇ ∫∫
ΓΩ q

dq
n
T

kvd
t
T

cQTkv ρ)(  (3.1) 

Here, the introduced function v  is the so-called test function. 

Then, by using the following divergence theorem: 

)()()()( TkvTvkTkv ∇⋅∇−∇⋅∇=∇⋅∇  (3.2) 

and Gauss’s theorem (i.e. Eq. (2.16)) for the first term in the strong form equation, one can 

further obtain: 
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∫∫∫∫∫
ΓΩΩΩΓ

=Γ



 +

∂
∂

+Ω
∂
∂

−Ω+Ω∇⋅∇−Γ⋅∇
q

dq
t
T

kvd
t
T

vcvQddTkvdnTvk 0ρ)()(
r

 (3.3) 

Recognizing qT Γ+Γ=Γ , nTk
n
T

kqn

r
⋅∇−=

∂
∂

−= )(  and making vv −=  (without loss of 

generality as both functions are arbitrary), one can finally reach the weak form as in Eq. 

(3.4) in which a lower order of continuity is required in the choice of the trial function T at 

the price of a higher continuity for test function v : 

0GGOO
Tq

T =
∂
∂

−+−Ω
∂
∂

+∇∇ ∫∫∫∫∫
ΓΓΩΩΩ

d
n
T

vkdqvvQdd
t
T

vcTdvk ρ  (3.4) 

It can be seen that if the choice of T is restricted in satisfying the essential boundary 

condition (i.e. Eq. (2.9)) along TΓ , the last term in the left-hand-side of Eq. (3.4) can be 

omitted. Then, Eq. (3.4) can be reduced to: 

0GOO
q

T =+−Ω
∂
∂

+∇∇ ∫∫∫∫
ΓΩΩΩ

dqvvQdd
t
T

vcTdvk ρ  (3.5) 

So, one can notice that the natural boundary condition (i.e. Eq. (2.10)) along qΓ  is satisfied 

since no variable T appears in the integrals taken along the boundary qΓ  in Eq. (3.5). 

Through the above derivations, it can be seen that in the Galerkin procedure, the initial and 

boundary conditions (i.e. Eq. (2.8) and (2.9) respectively) do not appear explicitly in the 

formulations. Thus, the spatial interpolation functions must be chosen so as to satisfy the 

essential boundary conditions, and a temporal stepping scheme must be started from the 

initial condition. This does not allow a general formulation. Also, from the original 
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governing equations (i.e. Eq. (2.3) and (2.6) for steady-state and transient problem 

respectively), since second derivatives appear in the integrand, the consistency requirement 

implies that 1C  continuity elements must be used. This is a stringent requirement in 

practice. Therefore, it is desirable to reduce the order of differentiation to employ 0C  

elements and to introduce the boundary conditions directly. This was realized through Eq. 

(3.5), with a trial (shape) function as constructed in the next step. 

3.2.3 Shape Function Construction 
The purpose of this step is to construct the shape function as described previously in the 

form of: 

Na==≈ ∑
i

ii
h aNTT  (2.13) 

where, shape functions ),( yxN i  postulate a spatial form for the dependent variable T in 

the element and are related to the number of nodes in that element as well as their 

numbering system. In turn, the function T is expanded as a spatially weighted summation 

over all the nodal points in Eq. (2.13). Each term in the summation process represents the 

contribution from a particular node i and contains terms iN  and ia  term defined for that 

node. This allows evaluation of the spatial integrals in Eq. (3.5). 

Since the transient problem involves the time variable (where the space domain Ω  is not 

subjected to change), the following partial discretization is adopted in this scheme: 

Na)(),(),,( ==≈ ∑ tayxNTtyxT
i

ii
h  (3.6) 
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Clearly, the derivatives of a with respect to time t will remain in the final approximation, 

and one can expect the resultant equation will be a set of ordinary differential equations 

with t as the independent variable. Concerning the spatial shape functions ),( yxN i , 

relevant equations in Section 2.2.2 can be employed for corresponding element types. 

3.2.4 Element Matrix Calculation in Closed-Form 
This step applies the key component of the Galerkin procedure, which is, substituting the 

shape functions as shown into Eq. (3.6) and prescribing the test functions as jj Nwv == . 

In doing so, Eq. (3.5) will lead to: 

0GOO
q

T =+−Ω
∂
∂

+∇∇ ∫∫∫∫
ΓΩΩΩ

dqNQdNd
t
T

NcTdkN jjjj ρ  (3.7) 

with Na)(),(),,( ==≈ ∑ tayxNTtyxT
i

ii
h  being such that the prescribed essential 

boundary conditions along TΓ  are satisfied. Then, it can be rewritten in a matrix system of 

ordinary differential equations as follows: 

0=++ f
a

CKa
dt
d

 (3.8) 

where, in heat analysis, K is the conductance matrix which is symmetric and diagonally 

dominant; C is the capacitance matrix; f is the forcing term due to internal heat resources 

(e.g. heat of hydration) and natural boundary conditions; and a is the nodal vector 

containing the nodal values of dependent variable T. The entries of matrices can be 

evaluated by: 
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∫
Ω

Ω== dcNNC jijiij ρC  (3.9.b) 

∫∫
ΓΩ

+−=
q

GOf dqNQdN jjj  (3.9.c) 

In the case of steady-state problems, instead of Eq. (3.8), standard shape functions in Eq. 

(2.13) (with ia  simply a set of constants) are used. The final equations thus are always of 

an algebraic form as follows: 

0=+ fKa  (3.10) 

from which a unique set of parameters (nodal solution) can be determined. 

From the above derivations, it can be seen that one equation of the form in Eq. (3.8) or Eq. 

(3.10) applies to every nodal point. Consequently, there is no need to specially construct 

the boundary equations, as often arises with the FD formulations. 

It is important to point out that in the above calculation of element coefficient matrices, an 

average value of the thermal property (k or c) can be assigned to each element based on the 

current temperature distribution to simplify the formulation. Similarly, parameters Q and 

ρ  are taken as constant, an average value within an element, as well as q  over the length 

of the boundary of the relevant element. 

Note that all the above calculations are evaluated in the local individual elements. One can 

use superscript “e” for elemental coefficient matrices, shape functions, and integral 
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domains to differentiate the global counterpart if necessary. The matrices in closed-form 

will be derived for all element types employed in this computational scheme. In the 

thermal analysis, since there is a single degree of freedom per node and material matrices 

are scalars (unlike counterpart matrices in traditional FE formulations), if the number of 

nodes in the element is equal to n, both the matrix K and C will be of the form nn × . 

Similarly, vector f will be 1×n . 

3.2.4.1 Linear Triangular Element 

For the triangle shown in Fig. 2.1, with the shape function described in Section 2.2.2.1, the 

following closed-form elemental matrices are calculated as follows: 

• The conductance matrix K: 

















+++

+++

+++

=

333323231313

323222221212

313121211111

4
ddccddccddcc

ddccddccddcc

ddccddccddcc

A
k

e

e
eK  (3.11) 

where 

mji yyc −=  and jmi xxd −=  (3.12) 

with i, j and m are taken as 1, 2, 3 in a cyclic permutation. 

• The capacitance matrix C: 
















=

211
121
112

12

eee
e Acρ

C  (3.13) 
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• The forcing term f: 

If side ij of the triangle is subjected to the natural boundary condition with a uniform flux q, 
















+
















−=+=

0
1
1

2
1
1
1

3

e
ij

eee
e
q

e
Q

e LqAQ
fff  (3.14) 

3.2.4.2 Bilinear Rectangular Element 

For the rectangle shown in Fig. 2.2, with the shape functions in Section 2.2.2.2, the 

following closed-form elemental matrices are calculated as follows: 

• The conductance matrix K: 





















+

−+

−−−+

−−−−+

=

)(.

)(

)(

)(

K

22

2222

222222

22222222

2sym

22

22

222

6

ba

baba

baabba

abbababa

ab
k e

e  (3.15) 

• The capacitance matrix C: 



















=

4sym
24
124
2124

9
.

C
abcee

e ρ
 (3.16) 

• The forcing term f: 

If edge 1-2 of the rectangle is subjected to the natural boundary condition with a uniform 

flux q, 
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

















+



















−=+=

0
0
1
1

2
1
1
1
1

12
ee

ee
q

e
Q

e Lq
abQfff  (3.17) 

3.2.4.3 General Four-Node Quadrilateral Element 

For the quadrilateral shown in Fig. 2.3, by the algorithm developed below the closed-form 

matrices can be directly calculated in terms of the nodal coordinates and thermal properties 

only. 

• The conductance matrix K: 

The calculation of K matrix here is reminiscent of the work in reference [34]. To save 

computational efforts, one can use symmetry of the matrix and separate the entries into 

three groups (B, D and F) as follows: 



















=





















=

B
DB
FDB
DFDB

K

KK

KKK

KKKK

44

3433

242322

14131211

sym.

K  (3.18) 

All entries in matrix K are of the form: 










−
+

+
−
+

=
2

2
2
2

2212
2

1
2
2

2112

332 fA
tftA

fA
sfsAk

K
e

ij  (3.19) 

2A  is twice the area of the element, which can be calculated as follows: 

))(())(( 423142312 xxyyyyxxA −−−−−=  (3.20) 
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and 

)())(())(( 4242423142311 2 xyyxxxyyyyxxf −+−+−−+=  (3.21.a) 

)())(())(( 3131421342132 2 xyyxxxyyyyxxf −++−−+−=  (3.21.b) 

All other coefficients will be formulated only for the parent entry within each group and 

remaining entries can then be calculated through a nodal coordinate transformation as 

follows: 

1144332211 yxyxyxyxyx ,, ⇒⇒⇒⇒  (3.22) 

Here, ⇒  indicates ‘overwrite’. 

All detailed calculations are described in Table 3.1. 
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Group# Parent 1s  2s  1t  2t  Order* 

B 11K  












−+

−
2

42

2
422

)(

)(

xx

yy
 21 /s−  

2
24

2
43

2
32

2
24

2
43

2
32

)()(

)()(

)()(

xxxx

xxyy

yyyy

−+−+

−+−+

−+−

 
2

32
2

43

2
32

2
43

)()(

)()(

xxxx

yyyy

−−−+

−−−
 

22

33

44

11

K

K

K

K

⇒

⇒
⇒

 

D 14K  
))((

))((

23142

23142

2

2

xxxxx

yyyyy

−−−+

−−−
 

))((

))((

1242

1242

xxxx

yyyy

−−+
−−

 
))((

))((

23413

23413

2

2

xxxxx

yyyyy

−−−+

−−−
 

))((

))((

4313

4313

xxxx

yyyy

−−+

−−
 

12

23

34

14

K

K

K

K

⇒

⇒

⇒
 

F 13K  












−+

−
−

2
42

2
42

)(

)(

xx

yy
 0 

)(

)(

))((

)(

)(

))((

4231

2
42

2413

4231

2
42

2413

2

2

2

2

xxxx

xx

xxxx

yyyy

yy

yyyy

+−
−−

+++

+−
−−

++

 
))((

))((

432142

432142

xxxxxx

yyyyyy

−+−−+

−+−−
 

24

13

K

K

⇒
 

Legend: 

#: grouping is separated based on the freedom characteristics as follows: 








nodes. oppositeat  freedom :
nodes;adjacent at  freedom :

itself); nodeon  (freedom Diagonal :

F
D
B

. 

*: computing sequence when one transforms parent term to remaining entries within each group. 

Table 3.1 Calculation of entries in K matrix for four-node quadrilateral element 
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• The capacitance matrix C: 

The calculation of matrix C is based on the developed MATHEMATICA subroutine which 

runs symbolic operations mathematically. Also, due to symmetry, only those entries on and 

above the main diagonal need to be calculated. 



















=

Rowth
Rowrd

Rownd
Rowst

c eee

4sym
3

2
1

.

C ρ  (3.23) 

where the formulation of entries in those four rows is given in Table 3.2. 

• The forcing term f: 

If edge 1-2 of the rectangle is subjected to the natural boundary condition with a uniform 

flux q, 



















+



















−=+=

0
0
1
1

2
1
1
1
1

4
12
eee

ee
q

e
Q

e LqA
Qfff  (3.24) 
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1st Row (four entries: 14131211 CCCC ,,, ): 

I 1
128

I− 32x2y1
3

+ 32x4y1
3

+ 32x1y2
3

− 32x3y2
9

− 64x4y2
9

+ 32x2y3
9

− 32x4y3
9

− 32x1y4
3

+ 64x2y4
9

+ 32x3y4
9

M MI 1
72

H−3x2y1+ x3y1 + 2x4y1 +3x1y2 − 2x3y2 − x4y2− x1y3 + 2x2y3 − x4y3− 2x1y4 + x2y4 +x3y4L MI 1
128

I− 16x2y1
9

+ 16x4y1
9

+ 16x1y2
9

− 16x3y2
9

+ 16x2y3
9

− 16x4y3
9

− 16x1y4
9

+ 16x3y4
9

M MI 1
128

I− 32x2y1
9

− 16x3y1
9

+ 16x4y1
3

+ 32x1y2
9

− 16x3y2
9

− 16x4y2
9

+ 16x1y3
9

+ 16x2y3
9

− 32x4y3
9

− 16x1y4
3

+ 16x2y4
9

+ 32x3y4
9

M M
 

2nd Row (three entries: 242322 CCC ,, ): I H L MI 1
128

I− 32x2y1
3

+ 64x3y1
9

+ 32x4y1
9

+ 32x1y2
3

− 32x3y2
3

− 64x1y3
9

+ 32x2y3
3

− 32x4y3
9

− 32x1y4
9

+ 32x3y4
9

M MI 1
128

I− 32x2y1
9

+ 16x3y1
9

+ 16x4y1
9

+ 32x1y2
9

− 16x3y2
3

+ 16x4y2
9

− 16x1y3
9

+ 16x2y3
3

− 32x4y3
9

− 16x1y4
9

− 16x2y4
9

+ 32x3y4
9

M MI 1
128

I− 16x2y1
9

+ 16x4y1
9

+ 16x1y2
9

− 16x3y2
9

+ 16x2y3
9

− 16x4y3
9

− 16x1y4
9

+ 16x3y4
9

M M
 

3rd Row (two entries: 3433 CC , ): 
I I M MI

128
I

9 9 9 9 3 9 9 3 9 9 9 9
M MI 1

128
I− 32x2y1

9
+ 32x4y1

9
+ 32x1y2

9
− 32x3y2

3
+ 64x4y2

9
+ 32x2y3

3
− 32x4y3

3
− 32x1y4

9
− 64x2y4

9
+ 32x3y4

3
M MI 1

72
H−x2y1− x3y1 + 2x4y1 +x1y2− 2x3y2 + x4y2+ x1y3 + 2x2y3 − 3x4y3− 2x1y4 − x2y4 +3x3y4L M  

4th Row (one entry: 44C ): 
I I M M

72
H LI 1
128

I− 32x2y1
9

− 64x3y1
9

+ 32x4y1
3

+ 32x1y2
9

− 32x3y2
9

+ 64x1y3
9

+ 32x2y3
9

− 32x4y3
3

− 32x1y4
3

+ 32x3y4
3

M M
 

Table 3.2 Calculation of entries in C matrix for four-node quadrilateral element 
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3.2.5 Global Equation Assembly 
In this step, the overall system is assembled by starting with zero matrices for K, C and f. 

Contributions from each element are sequentially added to the contents of the global 

system matrices. While mathematically governed by compatibility and equilibrium 

conditions, such an assembly process can be physically interpreted as reconnecting the 

discrete members back into the complete structure. The key operation of this assembly 

process is the placement of these contributions. Therefore, the mapping between the local 

element degree of freedom and global degree of freedom has to be established by using the 

mesh information. 

After all elements are assembled, it is necessary to condense the equations; that is, 

removing the nodal equations corresponding to the boundary nodes with Dirichlet 

conditions (i.e. Eq. (2.9)). Thus, the resulting equations are ready for solution. 

3.2.6 Equation System Solution 
In this step, particular solution procedures will be applied to solve the resultant equation 

system corresponding to steady-state and transient problems. For transient problems, the 

system forms a set of first-order differential equations in time while a set of algebraic 

equations arises in steady-state problems. So, they are treated separately as follows. 

3.2.6.1 Steady-State Problem 

If the matrix K can be inverted, Eq. (3.10) can be solved by direct methods; for example, 

by Gaussian elimination scheme. Since the matrix system is generally large, the methods 

taking advantage of the symmetrical, sparse and banded properties of K may lead to many 

specialized techniques, among which is the iterative method. 
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Instead of attempting to solve equations directly, iterative methods work with the 

individual equations which are usually found by solving the terms on the diagonal from Eq. 

(3.10). Iterative methods start from a guessed initial field, and sequentially improve the 

field by using successive iterations until that individual equation is satisfied to some extent, 

in the sense of reaching the tolerance specified in the beginning. It is worthy to note that 

the similar iterating equations must be modified near the appropriate boundary to account 

for the prescribed boundary conditions in the FD formulation while it is not the case in the 

current FE computational scheme. 

3.2.6.2 Transient Problem 

For transient problems, the resultant equation as in Eq. (3.8) is a set of first-order 

differential equations with time t as the independent variable. Thus, the solutions have to 

proceed with increasing time until the results are obtained over a specific time level or 

until the steady state is attained. In this section, attention is given to the construction of the 

time discretization since the spatial one is exactly same as that for steady-state problems 

aforementioned. After setting the time interval, one then can march in time, obtaining the 

temperature distribution at each time level in terms of the one at the preceding interval. 

The most common procedure is to use a finite difference in time with two levels, which 

was described in Section 2.3. Then, one can approximate the derivative term 
dt
d a

 by two-

point finite difference as follows: 

t
TT

dt
d nn

∆
−

= +1a
 (3.25) 
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At the same time, one has to make a decision regarding at what time level to evaluate the 

temperature in Eq. (3.8). The most popular scheme is to use the trapezoidal rule which 

uses a linear interpolation between levels n  and 1+n : 

11 ++ +−= nnrn rTTrT )(  (3.26) 

Substituting Eq. (3.25) and Eq. (3.26) into Eq. (3.8) leads to the so-called generalized mid-

point method [31]: 

01 =+
∆
−

+ ++
+

+++++ ),f(),C(),K( rnrn
nn

rnrnrnrnrn tT
t

TT
tTTtT  (3.27) 

where trtt nrn ∆+=+  with subscript n representing the nth time step. 

Eq. (47) can be rearranged as: 

rnnrn
rn

nrn
rn Trr

t
Tr

t ++
+

++
+ −




 −−
∆

=




 +
∆

f)(K)(
C

K
C

11  (3.28) 

where rn+C  means ),C( rnrn tT ++  , so too will the rn+K  and rn+f . 

As described in Section 2.3, different members of this family can be identified by changing 

the value of r from 0 to 1.0. Both the choice of 21/=r  (for accuracy considerations [10]) 

and 32 /=r  (for stability purpose [11]) will be employed in this computational scheme. 

Note that, due to the implicit nature, an iteration loop over each time step is required to 

maintain accuracy in nonlinear transient problems. That is, the coefficient matrices’ 

evaluation, assembly and solution have to be performed every iteration within each time 

step, which means nonlinear transient analyses are computationally intensive. 
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3.3 Numerical Properties of the Computational Scheme 

In many situations, questions arise regarding the errors involved in the numerical 

computations, as well as the consistency, stability and the convergence of the 

computational scheme. Such matters are discussed in the following sections. 

3.3.1 Accuracy 
It is important to keep in mind that numerical solutions are only approximate solutions. In 

addition to the errors that might be introduced in the course of development of the solution 

algorithm in programming and machine round-off in calculations, numerical solutions 

always include the following three kinds of errors: 

• Modeling errors: the difference between actual heat flow problem and the exact 

solution of the mathematical model described by PDEs. They may be considered negligible 

since the governing equations (Eq. (2.3) and (2.6)) represent a sufficiently accurate [4] 

model of the flow. However, it is noticed that modeling errors are also introduced by 

simplifying the geometry of the solution domain, simplifying initial and boundary 

conditions, and neglecting of thermal properties’ temperature-dependency. 

In the current computational scheme, the variable thermal properties will be taken into 

account. Also, the geometry is limited to the region consisting of straight-lined segments 

only; consequently the use of triangular and quadrilateral elements will be sufficient in 

modeling the geometry. During the application of boundary conditions, the concrete 

surface temperature is assumed the same as the ambient temperature. Although in some 

case, skin effect was found to be significant [32], it is ignored in the current scheme since 

convection analysis will be involved in this simulation. 
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• Discretization errors in approximation: the difference between the exact solution of the 

governing PDEs and exact solution of discrete approximation. Usually, one selects the 

approximations prior to writing a calculation code so the spatial and temporal grid 

resolutions are parameters at the user’s disposal to control the accuracy. 

In the current computational scheme, bilinear quadrilateral and linear triangular elements 

are employed for spatial approximation. The former is more accurate since it contains 

additional term xy in the interpolation functions. It is important to remark that by using the 

closed-form coefficient matrices, the spatial integrals are exactly evaluated in this aspect. 

For the time discretization, the two-level finite difference scheme employed together with 

the Crank-Nicholson method is of second-order approximation from a Taylor-series 

truncation error analysis [10]. In the case where more stability is required, then the backup 

Galerkin scheme is available for use. 

• Iteration errors in solution: the difference between the iterative and exact solutions of 

the algebraic equation system if an iterative process is involved. Usually, iteration is 

continued until the magnitude of the residual has been reduced to a certain amount and the 

acceptance criterion has been reached. Although this kind of error has nothing to do with 

the discretization itself, the effort required to reduce the error to a given magnitude grows 

as the number of discrete elements increases. Also, the machine round-off error evolves 

with the iteration calculations. In the current computational scheme, the efficient (in the 

sense of convergence) Gauss-Seidel iteration scheme is employed, one of the “side” effects 

of which is the reduction of the round-off errors created since it converges faster than 

standard schemes. 
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3.3.2 Consistency 
A discretization scheme is called consistent if the discretized equations converge to the 

given PDEs when both the time step and grid spacing tend to be zero. In other words, the 

consistency condition of the numerical method requires that the discretization error 

approaches zero as the mesh is refined. 

In the spatial FE discretization, two requirements for the consistency condition are 

addressed below. 

1. Completeness requirement: the element must have enough approximation power to 

capture the analytical solution in the limit of a mesh refinement process. More precisely, 

the element shape functions must represent exactly all polynomial terms of order m≤  (m 

is the variational index) in the Cartesian coordinates. In this aspect, the employed linear 

and bilinear elements are obviously satisfied with 1=m , as the field variable T appearing 

in the weak form integral statement (i.e. Eq. (2.6)) possesses derivatives up to the first 

order only. 

2. Compatibility requirement: the shape functions must provide continuity between 

elements. Physically, this requirement insures that no material gaps appear as the elements 

deform. Mathematically, patch shape functions must be 1−mC  (m as above) continuous 

between interconnected elements, and mC  piecewise differentiable inside each element. 

Again, obviously the employed finite element types are satisfied in this aspect. 

Concerning the two-level finite difference approximation in time, it is plain to see that the 

approximation error ( )( 2tO ∆ ) vanishes as 0→∆t , and consequently it is consistent. 
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3.3.3 Stability 
Even if the approximations are consistent, the solution of the discretized equation system 

will not necessarily become the exact solution of the PDEs in the limit of small spatial and 

temporal step sizes. For this to happen, the solution method has to be stable. A numerical 

solution method is said to be stable if it does not amplify, without bounds, the errors that 

appear in the course of numerical solution process. 

In the spatial FE discretization, stability is not a property of interpolation functions per se 

but of the employed element as well as its geometrical definition. Mathematically, there 

are two requirements for the stability condition: 

1. Rank Sufficiency: the element stiffness matrix must not possess any zero-energy 

kinematic modes other than rigid body modes. 

2. Jacobian Positiveness: the geometry of the element must preclude the excessive 

element distortion such that the determinant of the Jacobian matrix remains positive 

everywhere. 

With the choice of bilinear quadrilateral or linear triangular elements, the above stability 

conditions are naturally satisfied since closed-form evaluation, instead of Gauss quadrature, 

is employed in the current computational scheme. 

Regarding the temporal discretization, the two-level finite difference together with implicit 

Crank-Nicholson or Galerkin method is unconditionally stable for linear or weakly 

nonlinear problems and shows good but prudent [31] stability for highly nonlinear 

problems. Consequently, the coefficient matrices will be evaluated during every round of 

iteration within each time step in the current computational scheme. 
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3.3.4 Convergence 
The term convergence is used not only in conjunction with error reduction in iterative 

solution methods, but is also often associated with the convergence of numerical solutions 

towards a grid-independent solution, in which case it is closely linked [33] to discretization 

error. Therefore, in an iterative analysis, two different concepts of convergence are 

required for both discretization and iteration: 

1. Discretization: Numerical solutions are said to be convergent if the discretization 

error approaches zero as the grid spacing and time step are refined. In this sense, the exact 

solution is approached numerically by mesh refinement. The well-known Lax-Wendroff 

theorem says that satisfying consistency and stability is the necessary and sufficient 

condition for convergence. From the previous description on consistency and stability, one 

can see the current computational scheme will converge in the sense of discretization. 

2. Iteration: Iterative processes are said to be convergent if the iterative errors approach 

zero as the number of iterations increases. In practice, one can specify the criterion for 

convergence, such as: 

ε≤−+ ss TT 1  (3.29) 

to determine whether or not to continue to the next round of iteration. 

Although the initial guessed distribution of T is a very important factor in the iterative 

method, convergence with the iterative method does not depend on that initial guess but on 

the character of the coefficient matrices. In the current computational scheme, the diagonal 

dominant coefficient matrices guarantee the convergence, and the adoption of Gauss-

Seidel method makes it faster than standard iterations. 
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3.4 Closure 

In this chapter, a computational scheme was described step-by-step. With the use of 

proposed FE computational scheme, some difficulties were solved, which include 

accounting for temperature-dependent thermal properties, specifying time-varying 

boundary thermal loads, developing closed-form coefficient matrices, and considering heat 

of hydration. Also, various numerical properties of this computational scheme were 

evaluated. In the next chapter, some relative codes will be implemented and presented. 
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CChhaapptteerr  44  CCooddee  IImmpplleemmeennttaattiioonn  
This chapter presents the developed subroutine V2HEAT, which implements the proposed 

computational scheme described in Chapter 3. Also, necessitated by follow-up stress and 

deformation analyses after temperature calculations, reduction of mechanical properties at 

evaluated temperatures is calculated and the relative code is implemented in V2TRED. In 

addition, some auxiliary subroutines are described here as well, which include the code in 

Mathematica for the closed-form element matrix formulation and the code in MATLAB 

for temperature distribution contour plot. 

The developed codes will then be embedded into program VecTor2, a nonlinear finite 

element analysis (NLFEA) program for reinforced concrete two-dimensional structures. 

The behaviour analysis platform incorporated into the VecTor2 enables calculation of the 

response of reinforced concrete elements subject to in-plane normal and shear stresses in 

the second-order accuracy. VecTor2 primarily reads three types of input files, i.e. job, 

structure and load files. VecTor2 outputs binary and ASCII test files for analysis results for 

which the software Augustus provides graphically post-processing capabilities. 

4.1 V2HEAT in FORTRAN 

Generally, the subroutine V2HEAT (listed in Appendix C) is developed to facilitate 

program VecTor2 in performing 2D nonlinear steady-state and transient conduction 

thermal analysis by using the FE method. 
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Functionally, V2HEAT compromises between the often conflicting demands of generality 

and efficiency of applicability and ease of use. Globally, this subroutine has the same 

breadth of applicability as the FE computational scheme described in Chapter 3. It 

accounts for the nonlinear temperature-dependent thermal properties for various concrete 

and steel. Also, it is applicable to time-varying thermal loads. While it is limited in that it 

currently does not allow for heat-of-hydration, it may be later incorporated by specifying 

corresponding thermal loading, as formulated in Chapter 3. Furthermore, the same finite 

element data used in main-program VecTor2 are employed in this heat analysis. 

Structurally, V2HEAT consists of one main sub-program and some subsidiary subroutines. 

The main sub-program is the core which has a controlling function: initializing the 

calculations according to VecTor2’s input, monitoring the progress of calculations 

performed as they proceed through different time steps, iterating operations within each 

time step, and producing and restoring the resultant temperature fields at different stages. 

The subsidiary subroutines perform corresponding particular operations or calculations and 

are invoked by the main sub-program. Thus, the code has been deliberately structured so 

that it adapts to different problems. 

Schematically, a flowchart to represent the stream of implemented procedures is shown in 

Fig. 4.1, from which one can see that the loop of iteration for nonlinear thermal properties 

and the loops of time-advancing for transient analysis are at the core of the whole 

computational scheme. In practice, the code specifies the criterion of convergence for 

iteration and uses an external time frame (if any, e.g. time-step analysis model in VecTor2) 

or internal time interval for time-advancing. 
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Figure 4.1 Flowchart of V2HEAT 
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4.2 V2TRED in FORTRAN 

In addition to V2HEAT, the subroutine V2TRED is modified and updated to account for 

variation of mechanical properties at evaluated temperature up to Co1200 . A simple 

annotated source code is attached in Appendix D. For those properties which are given 

directly in a tier-by-tier manner, the relative coding is quite straightforward. The only 

exception is the thermal expansion property. The variation of this property for both 

concrete and steel was plotted in Section 2.4.2. It can be seen that both concrete and steel’s 

thermal expansion would cease altogether at certain degree of temperature. However, the 

thermal strain is developed progressively, so zero thermal expansion implies only that no 

change of thermal strain occurs at that temperature. In addition, the use of formula for 

calculating thermal strain at high temperatures in VecTor2 does not allow one to specify 

the thermal expansion reduction (in this case, increasing) factor to be zero (otherwise, the 

thermal strain will be zero from Eq. (4.1)). 

referrefer
thermal fTTTT ααε ⋅⋅−=⋅∆= )()(  (4.1) 

where f is the reduction factor of thermal expansion at temperature T. In fact, the above 

equation is originally based on the assumption of a constant thermal expansion. In order to 

keep this equation valid, the use of zero thermal expansion during some range of 

temperatures is implemented in an implicit way. That is, the )(Tα  in the equation is taken 

(interpreted) as the average value of thermal expansion in the temperature range referT  to T , 

instead of the one in that temperature T. As a result, the reduction factor calculated from 

the formula above is actually the range-average thermal expansion. In doing so, the real 

zero thermal expansion and non-zero thermal strain are maintained. 
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4.3 Closed-Form Element Matrices in MATHEMATICA 

VecTor2 models reinforced concrete elements (plain concrete or concrete with smeared 

reinforcement) by using three types of element: constant strain triangle, standard rectangle 

and bilinear four-node quadrilateral. All element matrices are formulated in the closed-

from in VecTor2, without resorting to the numerical integration. Due to the constant 

Jacobian, the closed-form formulations can be easily obtained for the triangular and 

rectangular elements, even with a full (but still symmetrical) material matrix D as follows: 





















=

44

3433

242322

14131211

sym. D

DD

DDD

DDDD

D  (4.2) 

While the conductance and capacitance matrices for triangle and rectangle may be 

available in some literature, they can be easily obtained by using high-level languages, 

such as MATHEMATICA. In the example of the rectangular element shown in Chapter 2 

(i.e. Fig. 2.2), the MATHEMATICA code is given in Figure 4.2 for general stiffness 

matrix development. The symbolic-form element matrix is also outputted in the same 

figure, with the assumption that the thickness of the element is unity. The stiffness matrix 

obtained can then be reduced to the conductance matrix as given in Section 3.2.4.2 since in 

heat analysis the material matrix is actually a scalar instead of a 33×  matrix and the 

degree of freedom on each node is single. The corresponding capacitance matrix 

development is given in Fig. 4.3. Since the element nodal coordinates in the code are 

specified as ),( ii yx  instead of ),( ba ±± , it can be actually applied to a four-node 

quadrilateral element as well. 
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Figure 4.2 Rectangle’s stiffness matrix calculation in Mathematica 

x = 8−a, a, a, −a<; y = 8−b, −b, b, b<;
Nf = 8H1− ξL∗ H1− ηL, H1 + ξL ∗ H1− ηL,H1+ ξL∗ H1+ ηL, H1 − ξL∗ H1+ ηL<ê4;
dNξ = D@Nf, ξD; dNη = D@Nf, ηD;
J11 = dNξ.x; J12 = dNξ.y; J21 = dNη.x; J22 = dNη.y;
J = 88J11, J12<, 8J21, J22<<;
Jdet = Simplify@J11∗J22 −J12∗J21D;
detJ = Simplify@J11∗J22 −J12∗J21D;
dNx = HJ22∗dNξ −J12∗dNηLêdetJ; dNx = Simplify@dNxD;
dNy = H−J21∗dNξ + J11∗dNηLêdetJ; dNy = Simplify@dNyD;
B = 8Flatten@Table@8dNx@@iDD, 0<, 8i, 4<DD,

Flatten@Table@80, dNy@@iDD<, 8i, 4<DD,
Flatten@Table@8dNy@@iDD, dNx@@iDD<, 8i, 4<DD<;

Dmat = 88D11, D12, D13<, 8D12, D22, D23<, 8D13, D23, D33<<;
K = Simplify@Transpose@BD.HDmat.BLD;
For @i = 1, i ≤ 8, i++,
For @j = 1, j ≤ 8, j++,
K@@i, jDD = Integrate@K@@i, jDD, 8ξ, −1, 1<D;
K@@i, jDD = Integrate@K@@i, jDD, 8η, −1, 1<D;D;D;

K1 = K@@1DD; K2 = K@@2DD; K3 = K@@3DD; K4 = K@@4DD;
K5 = K@@5DD; K6 = K@@6DD; K7 = K@@7DD; K8 = K@@8DD;
Print@"Selected row of K Matrix due to space limit"D
Print@"K1=", K1 êê MatrixForm, "K6=", K6 êê MatrixFormD;  
Selected row of K Matrix due to space limit  

K1=

i

k

16b2D11
3 +8abD13+ 16a

2D33
3

16a2b2

4abD12+ 16b
2D13
3 +16a

2D23
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−
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−
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2D13
3 −8a
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−
4abD12− 8b

2D13
3 + 16a
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y

{

K6=

i

k
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2D23
3 −4abD33

16a2b2

−8a
2D22
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3
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−
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2D13
3 + 16a

2D23
3 +4abD33

16a2b2

−
16a2D22

3 −8b
2D33
3

16a2b2
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2D13
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2D23
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16a2D22
3 +8abD23+ 16b

2D33
3
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−
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2D23
3 −4abD33

16a2b2

8a2D22
3 − 16b

2D33
3

16a2b2

y

{  
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Figure 4.3 Quadrilateral’s capacitance matrix calculation in Mathematica 

 

x = 8x1, x2, x3, x4<; y = 8y1, y2, y3, y4<;
Nf = 88H1− ξL ∗ H1− ηL, H1 + ξL∗ H1− ηL, H1+ ξL∗ H1 + ηL, H1− ξL∗ H1+ ηL<ê4<;
NfT = Transpose@NfD; dNξ = D@Nf, ξD; dNη = D@Nf, ηD;
J11 = dNξ.x; J12 = dNξ.y; J21 = dNη.x; J22 = dNη.y; J = 88J11, J12<, 8J21, J22<<;
detJ = Simplify@J11∗J22 −J12∗J21D; CM = NfT.Nf;
For @i = 1, i <= 4, i++, For @j = 1, j <= 4, j++,

CM@@i, jDD = Integrate@detJ∗CM@@i, jDD, 8ξ, −1, 1<, 8η, −1, 1<D;D;D;  
C1 = CM@@1DD; Print@"", C1D;  99 1
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C3 = CM@@3DD; Print@"", C3D;  99 1
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9
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Note that the above capacitance matrix excludes the multiplier of material coefficients (e.g. density and specific heat) which are 
usually taken as constants within each element. 
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The considerable potential of the Computer Algebra System (CAS), for example 

Mathematica and Maple, will be further demonstrated when constructing stiffness matrix 

for a general quadrilateral element. While a code similar to the one shown in Fig. 4.3 can 

be used in the derivation, the computation would likely never stop proceeding due to the 

rational Jacobian involved. In other words, the analytical expression for the fully integrated 

stiffness matrix of a quadrilateral four-node element does not seem to exist. Based on CAS 

and under the assumption of an isotropic elastic material, Reference [34] describes this 

stiffness matrix in a closed form by expanding and simplifying the terms in numerical 

integration summation. Since the CAS has a limited ability to simplify and factorize 

complex algebraic terms, one would have to further simply the expression produced by 

CAS in order to arrive at a suitable form for thesis writing or publication. To save effort on 

editing those expressions by hand, the algorithm in Reference [34] is used. However, to 

account for the anisotropy of reinforced concrete, the material matrix will be fully 

populated as shown in Eq. (4.2). Through an analysis done (shown in Fig. 4.4) on the 

material matrix, the computation algorithm for the stiffness matrix of a general 

quadrilateral element with a full material matrix is realized by a process of summation. 

Then, for heat analysis, the conductance matrix can be obtained if one specifies the single 

degree of freedom on each node and realizes that the material matrix is actually a scalar. 

VecTor2 previously divided the quadrilateral element into two triangles, sharing the 

shortest diagonal as a common edge, analyzed them separately and then took an area 

average of the strains in each triangle. To alter this ‘historical’ way of analysis, the 

subroutine V2STIF is modified based on the developed closed-form stiffness matrix 

algorithm. 
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Figure 4.4 A material matrix analysis for the calculation of the stiffness matrix 

Delastic = 88E1, E2, 0<, 8E2, E1, 0<, 80, 0, G<<; Dfull = 88C11, C12, C13<, 8C12, C22, C23<, 8C13, C23, C33<<;
Dconnex = 88E1, E2, C13<, 8E2, C22, C23<, 8C13, C23, G<<;
B = 88N1x, 0, N2x, 0, N3x, 0, N4x, 0<, 80, N1y, 0, N2y, 0, N3y, 0, N4y<, 8N1y, N1x, N2y, N2x, N3y, N3x, N4y, N4x<<;
BT = Transpose@BD; Ktemp = Delastic.B; K = BT.Ktemp; Print@"Kelastic=", K êê MatrixFormD; Ktemp = Dfull.B; K = BT.Ktemp;
Print@"Kfull=", K êê MatrixFormD; Ktemp = Dconnex.B; K = BT.Ktemp; Print@"Kconnex=", K êê MatrixFormD;

 

Kconnex =

i

k

N1x HE1 N1x +C13 N1yL+N1y HC13 N1x +GN1yL N1y HGN1x +C23 N1yL+N1x HC13 N1x +E2 N1yL N1x HE1 N2x +C13 N2yL+N1y HC13 N2x +GN2yL
N1y HE2 N1x +C23 N1yL+N1x HC13 N1x +GN1yL N1y HC23 N1x +C22 N1yL+N1x HGN1x +C23 N1yL N1y HE2 N2x +C23 N2yL+N1x HC13 N2x +GN2yLHE1 N1x +C13 N1yLN2x +HC13 N1x +GN1yLN2y HC13 N1x +E2 N1yLN2x +HGN1x +C23 N1yLN2y N2x HE1 N2x +C13 N2yL+N2y HC13 N2x +GN2yLHC13 N1x +GN1yLN2x +HE2 N1x +C23 N1yLN2y HGN1x +C23 N1yLN2x +HC23 N1x +C22 N1yLN2y N2y HE2 N2x +C23 N2yL+N2x HC13 N2x +GN2yLHE1 N1x +C13 N1yLN3x +HC13 N1x +GN1yLN3y HC13 N1x +E2 N1yLN3x +HGN1x +C23 N1yLN3y HE1 N2x +C13 N2yLN3x +HC13 N2x +GN2yLN3yHC13 N1x +GN1yLN3x +HE2 N1x +C23 N1yLN3y HGN1x +C23 N1yLN3x +HC23 N1x +C22 N1yLN3y HC13 N2x +GN2yLN3x +HE2 N2x +C23 N2yLN3yHE1 N1x +C13 N1yLN4x +HC13 N1x +GN1yLN4y HC13 N1x +E2 N1yLN4x +HGN1x +C23 N1yLN4y HE1 N2x +C13 N2yLN4x +HC13 N2x +GN2yLN4yHC13 N1x +GN1yLN4x +HE2 N1x +C23 N1yLN4y HGN1x +C23 N1yLN4x +HC23 N1x +C22 N1yLN4y HC13 N2x +GN2yLN4x +HE2 N2x +C23 N2yLN4y

 

          

N1y H G N2x + C23 N2y L + N1x H C13 N2x + E2 N2y L N1x H E1 N3x + C13 N3y L + N1y H C13 N3x + G N3y L
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N1y HC23 N3x +C22 N3yL+ N1x HGN3x + C23 N3yL N1y HE2 N4x +C23 N4yL+ N1x HC13 N4x + GN4yL N1y HC23 N4x +C22 N4yL+ N1x HGN4x + C23 N4yL
N2y HGN3x +C23 N3yL+ N2x HC13 N3x + E2 N3yL N2x HE1 N4x +C13 N4yL+ N2y HC13 N4x + GN4yL N2y HGN4x +C23 N4yL+ N2x HC13 N4x + E2 N4yL
N2y HC23 N3x +C22 N3yL+ N2x HGN3x + C23 N3yL N2y HE2 N4x +C23 N4yL+ N2x HC13 N4x + GN4yL N2y HC23 N4x +C22 N4yL+ N2x HGN4x + C23 N4yL
N3y HGN3x +C23 N3yL+ N3x HC13 N3x + E2 N3yL N3x HE1 N4x +C13 N4yL+ N3y HC13 N4x + GN4yL N3y HGN4x +C23 N4yL+ N3x HC13 N4x + E2 N4yL
N3y HC23 N3x +C22 N3yL+ N3x HGN3x + C23 N3yL N3y HE2 N4x +C23 N4yL+ N3x HC13 N4x + GN4yL N3y HC23 N4x +C22 N4yL+ N3x HGN4x + C23 N4yLHC13 N3x +E2 N3yL N4x + HGN3x + C23 N3yL N4y N4x HE1 N4x +C13 N4yL+ N4y HC13 N4x + GN4yL N4y HGN4x +C23 N4yL+ N4x HC13 N4x + E2 N4yLHGN3x +C23 N3yL N4x + HC23 N3x + C22 N3yL N4y N4y HE2 N4x +C23 N4yL+ N4x HC13 N4x + GN4yL N4y HC23 N4x +C22 N4yL+ N4x HGN4x + C23 N4yL

y

{  
 
Note: Dconnex-Delastic will be the terms in summation process to obtain Dfull. 
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4.4 Temperature Distribution Contour Plot in MATLAB 

To display the calculation results in graphics, a MATLAB code is developed (as shown in 

Fig. 4.5) for contour plots of temperature distribution. 

Figure 4.5 Contour plot of the temperature distribution in MATLAB 

function feaPlotS(ndS, ndXY, elT, u, scl) 
% This function plots the required temperature fields 
% Input: 
% ndS (nd Temp, ndStress or ndStrain): 
% should be a column vector of values to be plotted 
% ndXY: nodal coordinates 
% elT: element topology 
% u: nodal displacements 
% scl: scale factor for deformation 
hold on; 
 
dXY = ndXY(:,2:3); 
if nargin > 3 
    for i=1:size(ndXY,1) 
        dXY(i,1) = dXY(i,1) + scl * u(2*i -1); 
        dXY(i,2) = dXY(i,2) + scl * u(2*i   ); 
    end 
end 
 
% following commands draw the contour plot 
for e=1:size(elT,1) 
    xy = [dXY(elT(e, 2:5), 1), dXY(elT(e, 2:5), 2)]; 
    patch(xy(:,1), xy(:,2), ndS(elT(e, 2:5))); 
end 
 
%[ms,n]=max(ndS);text(dXY(n,1),dXY(n,2),int2str(n), 
'horizontalalignment','center','verticalalignment','middle'); 
 
axis equal; 
colorbar; 
hold off; 
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CChhaapptteerr  55  NNuummeerriiccaall  CCoorrrroobboorraattiioonn  
To assess the performance of the computational scheme presented in Chapter 3 and the 

code implementation described in Chapter 4, this chapter will carry out four numerical 

corroborative problems. While different investigated problems are designed to fulfill 

different objectives, each of them consists of: problem description, computational models, 

and results and discussion. 

5.1 Problem 1: Temperature Profiles 

The purpose of Problem 1 is to verify the temperature profile throughout the depth of a 

cross section. As such, some simplifications are made that bypass the time-varying thermal 

loads and temperature-dependent thermal properties. Also, no internal heat resource is 

present in this problem. 

• Problem description: 

Fig. 5.1 shows the cross section of a long square bar, initially at zero temperature 

everywhere. A constant temperature CT o100=  is suddenly imposed on the upper surface, 

while temperatures on the remaining surfaces are held at CT o0= . The task is to compute 

the development of the temperature field within the bar’s cross section until the final 

steady-state condition is reached. 
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Figure 5.1 Numerical test problem 1 

• Computational model: 

Figure 5.2 The finite element model for Problem 1 

As shown in Fig. 5.2, a 1111×  uniform computational grid is employed so that there are 

1441212 =×  nodes within the model. The model will be analyzed through 100 time steps 

of 50s duration, with a maximum of 100 iterations allowed at each time step. The criterion 

for convergence of iterative computations is prescribed to be 51001 −×. . In addition, the 

CT o100=  

CT o0=  

CT o0=  

CT o0=  

w=1.0m 

Density: 7850=ρ  (Kg/m3) 
Conductivity: 052.=k  (J/m-s-K) 
Specific heat: 0460.=pC  (J/Kg-K) 

h=1.0m 
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time stepping factor (i.e. r value in Eq. (3.26)) is set to be 0.5, which corresponds to the 

most accurate Crank-Nicholson scheme. 

• Results and discussion: 

The nodal temperature distribution within the structure is generated by the code. By 

examining the data on the vertical center line, the temperature profiles for both steady-state 

and transient analyses are obtained and plotted in Fig. 5.3. The graphic contour plots of 

temperature distribution, generated by a MATLAB code, are also given in Fig. 5.4 (a-e). 

Based on these results, some observations are discussed below. 

1. Temperature profiles (or thermal gradients): 

The transient thermal gradients are exceedingly nonlinear shortly after the thermal load is 

applied, while the steady-state analysis produces a fairly linear one. One can observe from 

Fig. 5.3 that the transient temperature profiles of listed durations (from 50s to 5000s) 

gradually approach the steady-state one as time advances. Thus, it can be expected that as 

time continues to proceed, there is one ending stage of transient thermal analyses when all 

transient effects have diminished and the corresponding temperature profile will be 

consistent with the one obtained from the steady-state analysis. 

2. Thermal stress: 

In this problem, continuity thermal stresses will not be induced because of the determinate 

nature of this problem from a structural viewpoint. However, due to the transient nonlinear 

thermal gradient, primary thermal stresses will be produced in the section. Nevertheless, 

the nonlinear thermal gradients approach the linear steady-state condition and, as such, 

primary thermal stresses in the section will diminish gradually as time advances. 
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3. Time stepping schemes: 

As mentioned in Sections 2.3 and 3.2.6.2, the time stepping factor r can be specified by 

using either the Crack-Nicholson scheme for accuracy considerations or the Galerkin 

scheme for stability purposes. In both Fig. 5.3 and Table 5.1, some oscillatory errors are 

observed during the analyses over a number of starting time steps. However, it appears that 

such errors diminish as time proceeds. If stability of the solution is a strong concern in the 

very beginning stages of the analysis, the Galerkin time stepping scheme can be used 

instead since it produces less oscillatory error than the Crank-Nicholson scheme. 

4.  Boundary conditions: 

The boundary condition that a zero temperature is held on both side edges of the section 

plays a key role in the resultant temperature distribution. A steady-state analysis on the 

section without prescribing the above conditions is tested, with the relevant temperature 

distribution given in Fig. 5.4 (f). It turns out that, without these conditions, the heat 

analysis can be actually reduced to the 1D case since the resultant temperature distribution 

is in a parallel-strip manner. 
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Figure 5.3 Temperature profiles through the depth of the cross section 

 

Nodal Temperature at Degree C 
Transient 

Node 
No. 

Depth 
(m) Steady 

State 50s 200s 500s 1000s 2000s 3000s 4000s 5000s 
30 1 100.0 1.00E+2 1.00E+2 1.00E+2 100.0 100.0 100.0 100.0 100.0 
94 10/11 81.7 1.19E+1 3.18E+1 4.90E+1 61.1 70.8 75.0 77.3 78.7 
93 9/11 64.8 -1.99E+0 2.44E+0 1.57E+1 30.5 45.4 52.5 56.5 59.0 
92 8/11 50.1 3.35E-1 -6.98E-1 2.49E+0 11.9 26.0 34.1 39.1 42.3 
91 7/11 38.1 -5.62E-2 4.93E-2 -1.15E-1 3.4 13.1 20.5 25.5 29.0 
90 6/11 28.5 9.43E-3 1.34E-2 -7.32E-2 0.6 5.8 11.4 15.7 19.0 
89 5/11 20.9 -1.58E-3 -6.04E-3 8.98E-3 0.0 2.2 5.8 9.2 11.9 
88 4/11 15.0 2.66E-4 1.42E-3 1.81E-3 0.0 0.7 2.7 5.0 7.1 
87 3/11 10.3 -4.45E-5 -2.24E-4 -7.10E-4 0.0 0.2 1.1 2.5 4.0 
86 2/11 6.4 7.46E-6 1.41E-5 6.74E-5 0.0 0.0 0.4 1.2 2.1 
85 1/11 3.1 -1.22E-6 5.28E-6 1.70E-5 0.0 0.0 0.1 0.5 0.9 
7 0 0.0 0.00E+0 0.00E+0 0.00E+0 0.0 0.0 0.0 0.0 0.0 

Data in shaded columns (over 50s, 200s and 500s) are in scientific numbers to show the oscillation involved. 

Table 5.1 Nodal temperatures on the center line in Problem 1 
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Figure 5.4 Temperature contour plots in Problem 1 

(a) Steady-State 

(d) Transient 1000s 

(b) Transient 50s 

(f) 1D reduction (e) Transient 5000s 

(c) Transient 200s 

Scalar 
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5.2 Problem 2: Accuracy Comparisons 

This problem is proposed to compare the accuracy of the results obtained from the 

developed code with those from ANSYS. While the code runs independently on VecTor2, 

some essential features of the computational scheme, such as multi-domain, variable-

thermal-property, and quadrilateral-element, are involved in the analysis. 

• Problem description: 

This is a nonlinear transient heat transfer analysis of a simplified casting process (phase 

change in the solidification process is ignored), which is given in ANSYS Guide [35]. The 

objective is to track the temperature distribution in the steel casting and the L-shape sand 

mold, as shown in Fig. 5.5. While convection occurring between the sand mold and the 

ambient air is neglected, conduction occurring between the steel and the sand mold is 

analyzed. The material of the sand mold has constant material properties while the casting 

steel has temperature-dependent thermal conductivity. The detailed material properties are 

given in Table 5.2. 

Figure 5.5 Numerical test problem 2 

1 in = 25.4 mm 
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Item U.S. Customary S.I. Equivalent 
Material properties for sand: 
Conductivity 
Density 
Specific heat 

 
0.025 FinhrBtu o−−/  
0.054 3inlb /  
0.28 FlbBtu o−/  

 
0.519 KmW /  

1495 3−mkg  
1172 kgKJ /  

Material properties for steel: 
Density: 
Specific heat: 
Conductivity:   at Fo0       ( Co817.− ) 
                         at Fo2643  ( Co1450 ) 
                         at Fo2750  ( Co1510 ) 
                         at Fo2875  ( Co1580 ) 

 
0.25 3inlb /  
0.11 FlbBtu o−/  
1.44 FinhrBtu o−−/  
1.54 FinhrBtu o−−/  
1.22 FinhrBtu o−−/  
1.20 FinhrBtu o−−/  

 
6920 3−mkg  
460.6 kgKJ /  
29.9 KmW /  
32.0 KmW /  
25.3 KmW /  
25.0 KmW /  

Table 5.2 Material properties in Problem 2 

• Computational model: 

A 2D analysis of a one unit thick slice will be performed. Half symmetry is used to reduce 

the size of the model, in which the lower half is the portion modeled. As the computational 

mesh in Fig. 5.6 shows, quadrilateral elements are employed in this analysis. Since the 

initial conditions are the starting point for a transient thermal analysis, one needs to specify 

both the initial temperatures of the steel casting ( Fo2875 ) and the sand mold’s ambient 

temperature ( Fo80 ). In addition, to make the final equation system non-singular, the 

boundary condition is added in such a way that the temperatures on the four external 

corners are held at Fo80 . The final time in this analysis is set at 3 hours, with the interval 

equal to 0.01 hour and the time stepping factor equal to 2/3 which corresponds to the 

Galerkin method instead of the Crank-Nicholson method tested in Problem 1. 
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Figure 5.6 The finite element model for Problem 2 

• Results and discussion: 

While the whole set of nodal temperature data can be directly obtained from the program’s 

output files, due to space limits only selected time steps’ results are included, which 

correspond to time steps equal to 0.25h, 0.5h, 1.0h, 2.0h and 3.0h. For the purpose of 

comparison, the exact same mesh system (including numbering of nodes and irregular 

quadrilateral elements) will be used in analyses with both ANSYS and the developed code 

V2HEAT. Also, an identical time advancing size is used for the same reason. Both a data-

list of the nodal temperatures and a contour-plot of its distribution are provided. Some 

discussion is given below based on the results. 

1. Contour plots: 

Contour plots of the temperature distribution for both analyses are shown in Fig. 5.7. Due 

to technique difficulties in programming, the nodal numbering system remains in contour 
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plots for V2HEAT. Also, the temperature scale shown is lightly different between each 

other. In spite of these display problems, one can readily see their similarity or closeness in 

the heat conduction trend. It is likely both of them are capable of capturing the heat 

conduction involved in this problem. 

2. Nodal temperature listings: 

In order to examine the difference between the two analyses more precisely, some 

investigation of local representative (circled in Fig. 5.6) nodal temperatures are given in 

Table 5.3 for statistic comparison. In addition, graphically compared in Fig. 5.8 are the 

time-history temperature curves of the model’s center (node 214). From both comparisons, 

V2HEAT is believed to be very similar to ANSYS in accuracy. 

3. Imperial units: 

Imperial units are used in both analyses. It follows that V2HEAT does not have the 

restriction on units provided all parameters are consistent in units. 
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Figure 5.7 Temperature contour plots in Problem 2 
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Figure 5.8 Time-history temperature curves of the model’s center 

T(V2HEAT)/T(ANSYS) Rep. 
Node 

Number 0.25 h 0.5 h 1.0 h 2.0 h 3.0 h 

214 2652.5/2512.2 
=1.056 

2469.6/2429.0 
=1.017 

2222.5/2189.7 
=1.015 

1924.8/1901.1 
=1.012 

1740.4/1721.7 
=1.011 

93 201.42/202.38 
=0.995 

388.92/456.30 
=0.852 

674.45/736.84 
=0.915 

954.07/985.18 
=0.969 

1086.7/1109.2 
=0.980 

124 187.52/178.31 
=1.052 

355.19/410.29 
=0.866 

613.98/669.21 
=0.918 

863.65/889.17 
=0.971 

979.65/995.42 
=0.984 

112 181.69/161.43 
=1.125 

349.68/396.52 
=0.882 

635.30/697.88 
=0.910 

966.71/1007.2 
=0.960 

1146.1/1176.3 
=0.975 

Mean 1.058 0.904 0.940 0.978 0.988 
Mean of 

COV#(%) (4.356+7.296+4.647+2.051+1.411)/5=3.95 

COV#: coefficient of the variation defined as percentage of ratio (standard deviation/mean). 

Table 5.3 Statistical comparisons in Problem 2 

Temperature ( Co ) 

Time (h) 
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5.3 Problem 3: Various Thermal Loads 

Unlike Problems 1 and 2, where the code runs independently of VecTor2, this problem 

requires a structural analysis be performed after the heat analysis capacity is implemented 

through the incorporated subroutine V2HEAT. Also, the modified V2TRED will allow one 

to take mechanical properties’ temperature dependency into account when determining a 

section’s response to various thermal loads. Taking advantage of VecTor2’s built-in 

realistic constitutive models, one can then expect some structural response to the applied 

time-varying thermal loads. 

• Problem description: 

The simply-supported reinforced concrete beam considered is shown in Fig. 5.9, with 

details of the material properties given in Table 5.4. In this example, two reinforced 

concrete material types are used. One type models the plain concrete comprising the flange, 

while the other models the web region of the beam with one smeared reinforcement 

component representing the stirrup reinforcement. Also, two ductile steel reinforcement 

material types are utilized to model the longitudinal steel bars. The beam is subjected to 

gravity load in addition to thermal loads which simulate fire underneath. The analyses are 

expected to determine both the internal (e.g. crack pattern) and external (e.g. deflection) 

responses of the beam at intermediate stages and at the conclusion of thermal loading. 
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Figure 5.9 Numerical test problem 3 

Material properties of concrete 
'

cf  '
tf  '

cε  cE  cα  
(MPa) (MPa) ( 310−× ) (MPa) ( Co/610−× ) 
24.1 1.88 2.00 24100 9.0 

Material properties of reinforcement 
φ  sA  yf  uf  sE  shE  shε  sα  

Type 
(mm) 2mm  (MPa) (MPa) (MPa) (MPa) ( 310−× ) ( Co/610−× ) 

1 13 253 345 700 200000 2000 5 11.5 
2 7.5 %.0990=ρ  325 600 200000 2000 5 - 
3 29 1282 555 900 200000 2000 5 11.5 

Table 5.4 Material details in Problem 3 

• Computational models: 

As both the structural and loading conditions are symmetrical about the mid-span, only one 

half of the beam needs to be modeled. Within the model shown in Fig. 5.10, nodes along 

the symmetrical line are restrained from displacements in the longitudinal direction, and 

the node at the support is restrained in the transverse direction. While the concrete is 

modeled by rectangular elements, truss bar elements are used for longitudinal reinforcing 

bars. All this structural information is prescribed through a structure input file, one of three 

primary kinds of files from which VecTor2 reads input information. 
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Figure 5.10 The finite element model for Problem 3 

The model will be analyzed through 54 time steps of 600s duration (9 hours in total), with 

a value of 0.5 for time stepping factor r and a maximum of 100 iterations allowed at each 

time step. In VecTor2, time steps proceed through an accumulation regime of the load 

stage defined in the job input file. For the current case, there are 54 load stages with the 

load increment of 600s. VecTor2 defines various types of thermal loads by prescribing the 

entry fields of Nodal Temperature Loads in the load input file, as provided in Table 5.5. 

The different fire loads provided are not intended to accurately simulate the fire in reality, 

but rather to illustrate some possible nodal temperature loads. 

While the various thermal loads tested are plotted in Fig. 5.11, listed in Appendix B are the 

aforementioned VecTor2’s input files of this example. Except for the particular thermal 

load file, all remaining files (job and structure files) are exactly same for all tests of 

thermal loads. 

• Results and discussion: 

From the analyses with the various thermal loads, some results and discussion are provided 

below. For the purpose of visual presentation, the software Augustus© is used to represent 

the output files from VecTor2 analyses. 
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Entry Fields in Load File 
Load 
Type 

Node Type Tm1 Tp1 Tm2 Tp2 Tm3 Tp3 

Load 
Plots 

1 + 1  +     

 

2 + 2 + + + + + + 

 

3 + 3 + + + +   

 

4 + 4       

 

5 + 5       

 

Notes: 

1. “+” indicates the field that is used in load definition; 
2. Load types 2-5 are transient analyses while type 1 is steady-state one. 
3. Full development curve in load type 3 is based on ASTM-E119 during the range of 

255C-1064C; and the decay curve is symmetrical with development one about the peak 
point. 

4. Standard fire curves in load types 4 and 5 have no ends. 

Table 5.5 Various fire models in VecTor2

)(log 148034520 10 ++= tT  

t 

T 

ISO-834 Fire Model 

teT t 41170175020 795533 .)( . +−+= −  

t 

T 

ASTM-E119 Fire Model 

T 

Horizontal 
growth 

full development 

(Tm2,Tp2) 
=(3h,1064C) 

Compartment Simplified Fire Model 

(Tm1,Tp1) 
=(30s,255C) t 

t 

T 

Constant Tp1 

Steady-State 

Constant 

t 

T 

(Tm1,Tp1

(Tm2,Tp2) 

(Tm3,Tp3) 

Three-Key-Node Linear Model 

Symmetrical 
        decay 
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Figure 5.11 Various thermal loads tested in Problem 3
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1. Load type 1: steady-state model 

Figure 5.12 Reaction forces at support 

Since the beam is statically determinate, no restrained force will result from thermal 

gradients, regardless of the fire load type. As a result, the reaction force at support in the 

above figure stays fairly constant, corresponding to the gravity load: 

kN258105205356030589102400 93 .).(. =×××××× −−  

For the deflection in the steady-state condition, due to the linear (in theory) thermal strain, 

the curvature is constant throughout the height of the beam, being equal to: 

hTc∆= αφ  (5.1) 

where 6
20 10090351182 −××=×= ..,cc f αα  and thermal gradient is equal to Co1000 . 

Then, one can use first moment area theorem to calculate the deflection from the curvature 

diagram as follows: 

mm9668
5608

25205310000351182109
842

262
T
mid .

).(.
=

×
×××××

=
∆

=××=∆
−

h
TLLL cα

φ  (5.2) 

0.0 
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4.0 

6.0 

8.0 

Load Type 1 

Reaction force at support (kN) 

1.0 2.0 3.0 4.0 5.0 6.0 8.0 7.0 
Time (h) 
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For the deflection due to the gravity load (treaded as a point load at the centroid of the 

beam), one can calculate the deflection by formula as follows: 

mm220
125603050102410048
107410745603050892400

48 36

33
G
mid .

)/..()(
).()....(

=
××××

×××××
=

×
=∆

cc IE
LW

 (5.3) 

It is observed that the values calculated above (totally mm2692209668 ... =+  due to both 

thermal and gravity loads) are very close to the results obtained from VecTor2 (67.9mm), 

shown in Fig. 5.13 (load type 1) below. The difference is likely due to cs αα < , causing 

some internal restraint. 

2. Load type 2: three-key-node linear model 

During the test of load type 2, the deflection-time curve given in Fig. 5.13 (load type 2) 

presents a similar overall trend as thermal gradient imposed while there is a lag in time 

observed between the turning points in plots of the imposed thermal gradient and the 

deflection curve. This lag is thought to be due to that in the plot of temperature load, the 

thermal gradient after the turning point is still very high and keeps contributing to the 

increase of the deflection until a lower stage is reached where the imposed temperature 

gradient is not sufficient to increase the deflection. This phenomenon is understandable if 

one considers the case where the transient constant temperature load is imposed but the 

deflection is increasing as time proceeds. 

Also, the net strain (total strain minus the thermal strain) in the concrete at the location of 

top mid-span of the beam is shown in Fig. 5.14. The strain approaches to zero at the 

conclusion of the test when the thermal gradient approaching linear steady-state condition.  
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Figure 5.13 Deflection-time curves at beam’s mid-span in Problem 3 

Figure 5.14 Net strains at top mid-span in the test of load type 2 
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3. Load type 3: compartment fire model 

In the deflection curve given in Fig. 5.13 (load type 3), the expected phenomenon of a 

similar trend as the thermal gradient does not occur in the test of load type 3. It is likely 

that the structure failed at about 5 hours, when the thermal load is still very high (over 

Co900 ), and hence deflections increase further. In fact, as shown by Augustus, the 

stiffness in the bottom steel bars is completely lost due to high temperatures there (over 

Co1100 ). The crack width at this moment is around 10 mm. The strain in the stirrup 

around the left corner is also quite high (around 5%, as shown in Fig. 5.15), which causes 

the stress in the stirrups to go well beyond the yield stress. 

Figure 5.15 Net strains in stirrups in the test of load type 3 
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4. Load types 4 and 5: standard fire curves 

The downward deflections obtained at the center of the beam for both load types 4 and 5 

are shown in Fig. 5.13 (load types 4 and 5). They are very close to each other due to both 

fire models (in terms of thermal gradients imposed) being very similar. Also, the program 

stops further calculations at about 3.67 hours when the stiffness of steel bars is lost in the 

bottom cracked concrete region, which produces a structural failure mechanism. The crack 

width at that time is also over 10 mm and the stress in the stirrups is well beyond the yield 

stress, as shown in Fig. 5.16. 

Figure 5.16 Average stresses in stirrups in the test of load type 4 

During analyses, with the variation of thermal loads, the beam’s crack development 

changes at different load stages (i.e. time). Although the deformed shapes and crack 

Average stress in stirrups (MPa) 

0.0 

60.0 

120.0 

180.0 

240.0 

300.0 

360.0 

3.0 2.5 2.0 1.5 1.0 0.5 3.5 

Time (h) 



Chapter 5 Numerical Corroboration 

 86 

patterns are available for each load stage, the one with the maximum crack width on the 

control chart in Augustus is chosen and shown in Fig. 5.17 for load types 3, 4 and 5. It is 

observed that they are slightly different, which is thought to be due to all of them occurring 

at very early load stages (numbers can be found in Fig. 5.17), where the thermal gradients 

of all loads are not much different from one another as given from Fig. 5.11. 

Figure 5.17 Crack patterns with control plots from the Augustus 

5. Extended to the one-way slab: a restrained structure 
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By simply modifying the restraint system on the model, one can test the same thermal 

loads on a one-way slab, with the left end treated as a continuous beam in this case. This 

test is not intended to really analyze the behavior of the slab with an appropriate dimension 

but to see the characteristic of the response of an indeterminate structure to the thermal 

loads. The load type 2 is selected in this test. 

The deflection-time curve obtained at the center of the slab is given in Fig. 5.18. It can be 

seen that it again presents the similar overall trend as the imposed temperature load plotted 

in Fig. 3.11. The sharp fluctuations in the curve are found to be due to severe cracking 

progression within the load stage. As a result, a smaller load incremental (i.e. time stepping 

size) is required to produce a smoother curve. That actually proves the fact that the high-

nonlinear transient heat analysis is computationally intensive. 

Figure 5.18 Deflection at the center of the slab tested 
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5.4 Problem 4: A Real Test 

This problem is modeled after a specimen tested by Vecchio and Sato [32] at the facilities 

of Ontario Hydro over 15 years ago. Unlike the original experimental program which 

covered a diverse range of thermal and mechanical loading conditions and was used to 

calibrate and validate their proposed theoretical formulations, this problem examines only 

three models to test the overall performance of the modified VecTor2. 

• Problem description: 

The test speciman is, overall, a reinforced concrete portal frame consisting of two columns 

and one beam. The schematic representation of the test model is shown in Fig. 5.19, with 

specimen details and material properties given in Table 5.6. Two side panels span the 

interior of the frame to form a tank-like structure, with a flexible silicone water-stop in the 

gaps between the panels and the frame allowing the frame to be structurally independent of 

the panels. Water placed in the tank then serves to apply thermal loads, by means of an 

immersed heater. 

Material properties Specimen details1 

Concrete3 Reinforcement 

f’
c (MPa) 42.4 fy (MPa) 448 

fcr (MPa) 3.12 fu (MPa) 710 

Ec (MPa) 58980 Ec (MPa) 217000 

b 
h 

As
’ 

d’ 
As 
d 

Av 

s 

(mm) 
(mm) 

(-) 
(mm) 

(-) 
(mm) 

(-) 
(mm) 

800 
300 

4#20M2 

55 
4#20M 

55 
#10M 
150 cα  ( Co/ ) 610869 −×.  sα  ( Co/ ) 610412 −×.  

1: Reinforcement in both columns and the beam is identical; 
2: Area of #10M is 100 2mm ; #20M is 300 2mm ; 
3: Thermal diffusivity is taken as the measured value s/. 2mm7740 . 

Table 5.6 Specimen details and material properties in Problem 3 
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Figure 5.19 Numerical test problem 4 (From reference [32]) 
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• Computational model: 

The computational model is shown in Fig. 5.20 (d), in which only half of the structure is 

modeled due to symmetry. 

Three distinct types of tests will be considered. The Type I test (Fig. 5.20 (a)) is conducted 

with the test model in an unrestrained mode. The temperature load Type I will be 

maintained for a long period (10 hours) so that both transient and final steady-state 

conditions can be observed. In the Type II test (Fig. 5.20 (b)), the tie-rod is engaged to 

render the structure one-degree statically indeterminate. Thus, with the columns restrained 

from outward deflection by the tie-rod, restraint forces are induced in the tie-rod and hence 

in the frame. The temperature load for the Type II test will be applied about for 10 hours to 

disclose the internal crack pattern developed and external restraint forces produced. In the 

Type III test (Fig. 5.20 (c)), the model is in the unrestrained configuration while a 

simultaneously acting mechanical load is applied laterally to the column at a location 800 

mm above the bottom of the beam. The temperature load Type III will be applied until the 

ultimate capacity of the structure is attained under the monotonically increased (from zero) 

mechanical loads. 

Instead of focusing on thermal “shock” tests, as in the original experimental program, the 

thermal loads employed in this problem consist of different increase amounts at varous 

rates for each test type. The temperature on faces not exposed to water is maintained at the 

room temperature Co15 . A plot of thermal loads is given in Fig. 5.21. 

All VecTor2 input files used in this problem are listed in Appendix C. 
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Figure 5.20 Computational models in Problem 4 

• Results and discussion: 

The results obtained from analyses are discussed below, with different focuses for each 

type of the test. 
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(d) Computational model From reference [32] 
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Figure 5.21 Thermal loads tested in Problem 4 

1. Type I test: 

During Type I testing, highly nonlinear transient thermal gradients are produced within the 

members in the beginning. In time, they approach a steady-state condition, characterized 

by a fairly linear gradient thought the depth of the section. The imposed thermal loads 

result in an upward deflection of the beam relative to its ends and outward deflections of 

the column relative to its base. The vertical deflection occurring at the mid-span of the 

beam and the lateral deflection at the top of the column are shown in Fig. 5.22. Both of 

them are thought to match the trend of the thermal load applied, increasing linearly in the 

beginning and becoming constant in the end. The deflection at beam’s mid-span increases 

from 2.58 mm to 2.68 mm and the one at the column’s top increases from 14.64 mm to 

15.43 mm during the time range of 4-10 hours. That indicates the heat flow approaches the 

steady-state condition under which the deflection will stay unchanged in theory. 

Primary thermal stresses are induced in the test model, mainly due to nonlinearity in the 

thermal gradients shortly after the thermal loads are applied (also from differences in 
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thermal expansion coefficients between concrete and reinforcement). However, this stress 

diminishes as the thermal gradients approach the linear steady-state condition. This 

phenomenon is well presented by Fig. 5.22, in which both concrete’s shear and normal 

stresses within the outer-corner element approach to zero at conclusion of the test. 

Figure 5.22 Deflections and stresses in Type I test 
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2. Type II test: 

In this test, all three levels of temperature loading are applied on the model. As shown in 

Fig. 5.23, the restraint forces induced in the model present a similar style of overall trend 

for all types of load. A higher temperature gradient seems to have a faster increase in the 

initial stages, while the peak value appears to be lower. Also, the time when peak value of 

restraint forces occurs are not corresponding to the ones of thermal gradients. In this aspect, 

a higher temperature load appears to have a further gap between these two peak times. 

After peaking, the forces then have a large drop. It is likely due to the sudden severe 

cracking that develops during these times, which renders the structure less stiff. Actually, a 

lower temperature load ‘postpones’ the occurring and progression of severe cracking. 

Consequently, the restraint force can develop a longer time, during which the internal 

forces can be redistributed better. After dropping, the forces increase marginally (due to 

increase of temperature loading) until the temperature gradients within structure achieve 

the highest state. Thereafter, the forces remain essentially constant over the remainder of 

the test. For example, in the case with load type B2T, a severe cracking progression is 

observed at the location about 500 mm from the base of the column, as shown in Fig. 5.24. 

The concrete stress at this location goes up to the tensile strength of the concrete. 

In addition to crack conditions, it is found that the restraint force induced is also sensitive 

to yield conditions within the structure. Within the test of the thermal load Type I on the 

model, a yield stress in reinforcement is observed during the drop period, at the location 

around the cracking shown in Fig. 5.25. The yielding of reinforcement can significantly 

reduce the structure’s stiffness, and in turn reduce the restraint force in the statically 

indeterminate structure. 
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Figure 5.23 Restraint force induced at engaged tie-rods in Type II test 

Figure 5.24 Concrete stresses and crack pattern in Type II test 
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Figure 5.25 Yield stress in reinforcement during Type II test 

3. Type III test: 

In Type III testing, in addition to the temperature loading, the lateral load applied is 

monotonically increased until the ultimate capacity of the model is exceeded. 

During the test of temperature load Type III on the model, as shown in Fig. 5.26 (type 

“3R+3T”) the load-deformation curve of the structure is linear until the bottom 

reinforcement in the beam yields at about 1.0 hours. Thereafter, response is essential 

plastic with a limited increase in the load capacity, mainly due to strain hardening. A 

response of the model without the thermal load is also plotted in Fig. 5.26, denoted by type 

“3R+0T”. From the comparison, the presence of a thermal load in the case of test model 

does not appear to reduce the ultimate capacity of the structure very much. However, if the 
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thermal load is sufficiently high it can crack the structure when the mechanical load is still 

at a low level. In some cases, the presence of the thermal load may yield the structure 

much earlier than the case without thermal loads. In addition, a highly nonlinear thermal 

gradient will induce primary stresses within the structure and reduce the stiffness and 

strength of the structure to a significant degree. 

Noticing that the structure is statically determinate and no force redistribution will then be 

present, extended tests on restrained model in Type II test are also performed, with and 

without the thermal load Type III. The load-deformation curves obtained are also plotted in 

Fig. 5.26, denoted by types “2R+0T” and “2R+3T” 

Through the comparisons between types “3R+3T” and “2R+3T”, it is observed that the 

introduced restraint highly increases the structure’s ultimate capacity. From the 

comparisons between the types “2R+1T” and “2R+0T”, it is again not found that the 

presence of the thermal load (even in a high level as B1T) produces a significant influence 

on the response of the statically indeterminate structure. However, the presence of thermal 

loads should be always of attention since the cracking and yield of the structure are likely 

sensitive to the amount of the thermal loads applied. 
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Figure 5.26 Load-deformation curves obtained in Type III test 
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CChhaapptteerr  66      CCoonncclluussiioonnss  aanndd  FFuurrtthheerr  
RReesseeaarrcchh  PPrroossppeeccttss  

6.1 Conclusions 

In this work, a 2D transient nonlinear thermal analysis capability is implemented into 

program VecTor2. Models are created to account for the time-varying thermal loads and 

the temperature-dependence of the various concrete and steel mechanical and thermal 

properties that influence structural and thermal analyses. In addition, formulations for 

considering heat-of-hydration problems and algorithms for calculating the closed-form 

element stiffness for a quadrilateral element with a fully-populated material stiffness are 

developed and realized. 

With the results obtained from numerical corroboration testing, the developed 

computational scheme and the implemented code are found to be accurate, stable and 

reliable. However, considerable improvements are required before they equal the 

prominence of the static and dynamic analyses within the VecTor suite of program 

development and in the advanced concrete structural analysis. 

6.2 Suggestions 

While a wide variety of research is possible in future work, some aspects closely related to 

this research are suggested below for further investigation and development. 
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• In the FE analysis: 

For practical engineering problems, the subject of error estimation for numerical solutions 

and the development of adaptive refinement procedure are central. As a nonlinear finite 

element analysis facility, VecTor suite of programs have a common but challenging step to 

move forward in this aspect. For all incorporated finite element calculations, including the 

heat flow analysis, an error estimation process is required to assess the performance of the 

current discretization and to provide quantitative description on the accuracy of the present 

solution. Such a description is essential for the refinement process in which a new finite 

element mesh will be generated to reduce the discretization error by increasing the number 

of degrees of freedom where the previous analysis is not adequate. In order to do that, a 

well designed refinement strategy is necessary to define that new spatial and/or temporal 

discretization in a most economic manner. 

• In the heat modeling: 

The computational methods have become extremely powerful and sophisticated with great 

accuracy during the past few decades. However, from the point of view of overall 

structural reliability, the results of sophisticated computations of structural response are 

only, in the end, as good as the assumptions for the simulation or simplification of applied 

loads, which includes fire. Specifically in heat modeling for concrete structures, heat-of-

hydration, thermal creep and spalling effect, and multi-phase change remain intensive 

research topics though much effort was devoted in previous decades. Also, precise 

knowledge of the mechanism and kinetics of the microstructure for material properties’ 

temperature dependency require further investigation. 
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• In the VecTor development: 

As direct future work, heat flow analysis is required to be incorporated into three-

dimensional problems. It is imperative to implement the nonlinear transient FE thermal 

analysis capacity into the entire VecTor suite of problems, such as VecTor3 for 3D solid 

and other kinds of structure types. In this extension, attention must be paid to the efficiency 

of the developed computationally scheme since the highly nonlinear transient analysis is 

computational intensive. In addition, the window-based input and graphic-based output 

facilities are also needed to facilitate user interaction and result presentation. 

• In experimental work: 

Experimental tests are essential for the parameter collecting, formulation corroboration, 

and theory validation. The setup of various heat models would require a large database to 

be established. Also, results obtained from laboratory tests could uniquely verify the 

developed numerical scheme. As an urgent need from the current research, hydration and 

thermal creep testing as well as high-temperature material property evaluation are 

exceedingly important. 
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A1.JOB 
                               * * * * * * * * * * * * 
                               *     V e c T o r     * 
                               *   J O B   D A T A   * 
                               * * * * * * * * * * * * 
 
Job Title       (30 char. max.)        : A1 
Job File Name   ( 8 char. max.)        : A1 
Date            (30 char. max.)        : Nov 08, 2003 
 
STRUCTURE DATA 
-------------- 
Structure Type                         : 2 
File Name       ( 8 char. max.)        : A1R 
 
LOADING DATA 
 
------------ 
No. of Load Stages                     : 54 
Starting Load Stage No.                : 1 
Load Series ID  ( 5 char. max.)        : A1 
 
Load   File Name         |                    Factors                     | 
Case   (8 char max)          Initial    Final    LS-Inc  Type Reps    C-Inc 
  1    A1T                    1.000     1.000   600.000    1    2     1.000       
  2    A1G                    1.000     1.000     0.000    2    1     0.000       
  3    NULL                   0.000    40.000     0.500    1    1     0.000       
  4    NULL                   0.000     0.000     0.000    1    1     0.000      
  5    NULL                   0.000     0.000     0.000    1    1     0.000      
 
ANALYSIS PARAMETERS 
------------------- 
Analysis Mode                         (1-2) : 1 
Seed File Name                 (8 char max) : NULL 
Convergence Limit                    (>1.0) : 1.00001 
Averaging Factor                     (<1.0) : 0.25 
Maximum Iterations                          : 100 
Convergence Criteria                  (1-5) : 2 
Results Files                         (1-4) : 2 
Output Format                         (1-3) : 1 
 
MATERIAL BEHAVIOUR MODELS 
------------------------- 
Concrete Compression Base Curve       (0-3) : 1 
Concrete Compression Post-Peak        (0-3) : 1 
Concrete Compression Softening        (0-8) : 1 
Concrete Tension Stiffening           (0-5) : 1 
Concrete Tension Softening            (0-3) : 1 
Concrete Tension Splitting            (1-2) : 1 
Concrete Confined Strength            (0-2) : 1 
Concrete Dilatation                   (0-1) : 1 
Concrete Cracking Criterion           (0-4) : 1 
Concrete Crack Slip Check             (0-2) : 1 
Concrete Crack Width Check            (0-2) : 1 
Concrete Bond or Adhesion             (0-4) : 1 
Concrete Creep and Relaxation         (0-1) : 1 
Concrete Hysteresis                   (0-3) : 2 
Reinforcement Hysteresis              (0-3) : 1 
Reinforcement Dowel Action            (0-1) : 1 
Reinforcement Buckling                (0-1) : 1 
Element Strain Histories              (0-1) : 1 
Element Slip Distortions              (0-4) : 1 
Strain Rate Effects                   (0-1) : 1 
Structural Damping                    (0-1) : 1 
Geometric Nonlinearity                (0-1) : 1 
Crack Allocation Process              (0-1) : 1 
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A1R.S2R 
                   * * * * * * * * * * * * * * * * * * * 
                   *           V e c T o r 2           * 
                   *   S T R U C T U R E     D A T A   * 
                   * * * * * * * * * * * * * * * * * * * 
 
                           STRUCTURAL PARAMETERS 
                           ********************* 
 
Structure Title        (30 char. max.)     : BRESLER SCORDELIS A1 
Structure File Name    ( 8 char. max.)     : A1 
No. of R.C. Material Types                 : 2 
No. of Steel Material Types                : 2 
No. of Bond Material Types                 : 0 
No. of Rectangular Elements                : 370 
No. of Quadrilateral Elements              : 0 
No. of Triangular Elements                 : 0 
No. of Truss Elements                      : 111 
No. of Linkage Elements                    : 0  
No. of Contact Elements                    : 0 
No. of Joints                              : 418 
No. of Restraints                          : 33 
 
                         MATERIAL SPECIFICATIONS 
                         *********************** 
 
                         (A) REINFORCED CONCRETE 
                         ----------------------- 
<NOTE:> FOR RECTANGULAR, QUADRILATERAL AND TRIANGULAR ELEMENTS ONLY 
 
CONCRETE 
-------- 
MAT  Ns    T    f'c  [ f't    Ec    e0     Mu   Cc   Agg   Dens   Kc ] [Sx  Sy] 
TYP  #    mm    MPa    MPa   MPa    me          /C    mm  kg/m3  mm2/s  mm  mm    
  1   0   305  24.1   1.88  24100  2.00   0.15   0    15     0     0    0    0 
  2   1   305  24.1   1.88  24100  2.00   0.15   0    15     0     0    0    0 
/ 
REINFORCEMENT COMPONENTS       
------------------------ 
MAT SRF  DIR  As  Db  Fy   Fu    Es    Esh    esh   Cs   Dep 
TYP TYP  deg  %   mm  MPa  MPa   MPa   MPa    me    /C   me 
  2   1  90. 0.099  7.5  325  600  200000  2000  5  0  0 
/ 
                                (B) STEEL 
                                --------- 
<NOTE:> TO BE USED FOR TRUSS ELEMENTS ONLY 
MAT  REF    AREA   Db    Fy    Fu    Es    Esh   esh   Cs   Dep 
TYP  TYP     mm2   mm   MPa   MPa   MPa    MPa    me   /C    me 
1   1    1282    29     555   900  200000  2000  5   11.5E-6  0 
2   1     253    13     345   700  200000  2000  5   11.5E-6  0 
/ 
                                (C) BOND  
                                -------- 
<NOTE:> TO BE USED FOR EXTERIOR/INTERIOR BONDED ELEMENTS  
MAT  REF  { Ao   U1    U2    U3    S1    S2    S3 }/{ CPF   Cmin   No.  HOOK } 
TYP  TYP   mm^2  MPa   MPa   MPa   mm    mm    mm     0-1    mm    LYR   0/1    
/ 
                           ELEMENT INCIDENCES 
                           ****************** 
 
                         (A) RECTANGULAR ELEMENTS 
                         ------------------------ 
<<<<< FORMAT >>>>> 
ELMT INC1 INC2 INC3 INC4  [ #ELMT d(ELMT) d(INC) ] [ #ELMT d(ELMT) d(INC) ] / 
  1   1   2  40  39   37  1  1  10  37  38 / 
/ 
                        (B) QUADRILATERAL ELEMENTS 
                        -------------------------- 
<<<<< FORMAT >>>>> 
ELMT INC1 INC2 INC3 INC4  [ #ELMT d(ELMT) d(INC) ] [ #ELMT d(ELMT) d(INC) ] / 
/ 
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                         (C) TRIANGULAR ELEMENTS 
                         ----------------------- 
<<<<< FORMAT >>>>> 
ELMT INC1 INC2 INC3  [ #ELMT d(ELMT) d(INC)] [ #ELMT d(ELMT) d(INC) ] / 
/ 
                           (D) TRUSS ELEMENTS 
                           ------------------ 
<<<<< FORMAT >>>>> 
ELMT INC1 INC2 [ #ELMT d(ELMT) d(INC)] [ #ELMT d(ELMT) d(INC) ]  / 
371  39  40  37  1  1 / 
408  77  78  37  1  1 / 
445 343 344  37  1  1 / 
/ 
                          (E) LINKAGE  ELEMENTS 
                          --------------------- 
<<<<< FORMAT >>>> 
ELMT INC1 INC2 [ #ELMT d(ELMT) d(INC) ] [ #ELMT d(ELMT) d(INC) ]  
 / 
                          (F) CONTACT  ELEMENTS 
                          --------------------- 
<<<<< FORMAT >>>> 
ELMT INC1 INC2 INC3 INC4 [ #ELMT d(ELMT) d(INC) ] [ #ELMT d(ELMT) d(INC) ]  
/ 
                         MATERIAL TYPE ASSIGNMENT 
                         ************************ 
<<<<< FORMAT >>>>> 
ELMT  MAT  ACT  [ #ELMT d(ELMT)] [ #ELMT d(ELMT) ] / 
  1  1  1   37 1 / 
 38  2  1  296 1 / 
334  1  1   37 1 / 
371  1  1   74 1 / 
445  2  1   37 1 / 
/ 
                             COORDINATES 
                             *********** 
<NOTE:> UNITS:  mm 
<<<<< FORMAT >>>>> 
NODE X Y  [ #NODES d(NODES)  d(X) d(Y) ] [ #NODES d(NODES)  d(X) d(Y) ] / 
  1    0.    0.   38  1  55.5  0.  2  38  0.  65. / 
 77    0.  125.   38  1  55.5  0.  7  38  0.  55. / 
343    0.  510.   38  1  55.5  0.  2  38  0.  50. / 
/ 
                         SUPPORT RESTRAINTS 
                         ****************** 
<NOTE:> CODE:  '0' FOR NO RESTRAINT; '1' FOR RESTRAINT 
<<<<< FORMAT >>>>> 
NODE  X-RST  Y-RST [ #NODE d(NODE) ]  / 
  1 1 1 11 38/ 
 38 1 0 11 38/ 
/    
 
 
 
<NOTES:> 
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A1G.L2R 
                         * * * * * * * * * * * * * 
                         *     V e c T o r 2     *        
                         *   L O A D   D A T A   * 
                         * * * * * * * * * * * * * 
 
                           LOAD CASE PARAMETERS 
                           ******************** 
 
Structure Title      (30 char. max.)     : B/S Beams 
Load Case Title      (30 char. max.)     : 100 kN 
Load Case File Name   (8 char. max.)     : A1 
No. of Loaded Joints                     : 0 
No. of Prescribed Support Displacements  : 0 
No. of Elements with Gravity Forces      : 370 
No. of Elements with Temperature Change  : 0 
No. of Elements with Concrete Prestrain  : 0 
No. of Elements with Ingress Pressure    : 0 
No. of Nodes with Thermal Load           : 0 
No. of Nodes with Lumped Masses          : 0 
No. of Nodes with Impulse Forces         : 0 
Ground Acceleration Record  (0-1)        : 0 
 
                              JOINT LOADS 
                              *********** 
<NOTE:>  UNITS:  KN 
<<<<< FORMAT >>>>> 
NODE    Fx    Fy    [ #NODE d(NODE) d(Fx) d(Fy) ] / 
/ 
                         SUPPORT DISPLACEMENTS 
                         ********************* 
<NOTE:> UNITS: MM 
<<<<< FORMAT >>>>> 
JNT  DOF  DISPL   [ #JNT d(JNT) ] / 
/ 
                             GRAVITY LOADS   
                             ************* 
<NOTE:>  UNITS:  KG/M3 
<<<<< FORMAT >>>>> 
ELMT  DENS  GX  GY  [#ELMT d(ELMT)] [ #ELMT d(ELMT)] / 
  1   2400   0   1   370  1 / 
/ 
                           TEMPERATURE LOADS 
                           ***************** 
<NOTE:>  UNITS:  C 
<<<<< FORMAT >>>>> 
ELMT   TEMP   [ #ELMT d(ELMT) d(TEMP) ] [ #ELMT d(ELMT) d(TEMP) ] / 
/ 
                          CONCRETE PRESTRAINS 
                          ******************* 
<NOTE:>  UNITS:  me 
<<<<< FORMAT >>>>> 
ELMT  STRAIN   [ #ELMT d(ELMT) d(STRAIN) ] [ #ELMT d(ELMT) d(STRAIN) ]  / 
/ 
                           INGRESS PRESSURES  
                           ***************** 
<NOTE:>  UNITS:  MPa 
<<<<< FORMAT >>>>> 
ELMT PRESSURE  [ #ELMT d(ELMT) d(PRS) ] [ #ELMT d(ELMT) d(PRS) ]  / 
/ 
                          NODAL THERMAL LOADS 
                          *******************  
<NOTE:>  UNITS:  Sec, Degrees C 
<<<<< FORMAT >>>>> 
NODE  TYPE  Tm1 Tp1  Tm2 Tp2  Tm3 Tp3  [#NODE d(NODE)] [#NODE d(NODE)]  / 
/ 
                             LUMPED MASSES  
                             ************* 
<NOTE:>  UNITS:  kg, m/s 
<<<<< FORMAT >>>>> 
NODE  DOF-X  DOF-Y  MASS  GF-X  GF-Y  Vo-X  Vo-Y  [ #NODE d(NODE) ] / 
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/ 
                            IMPULSE FORCES 
                            ************** 
<NOTE:>  UNITS:  Sec, kN 
<<<<< FORMAT >>>>> 
NODE  DOF  T1   F1   T2   F2   T3   F3   T4   F4  [ #NODE d(NODE) ] / 
/ 
                          GROUND ACCELERATION 
                          ******************* 
<NOTE:>  UNITS:  Sec, m/s2 
<<<<< FORMAT >>>>> 
TIME   ACC-X   ACC-Y 
/ 
 
 
 
<NOTES:> 
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A1T.L2R 
                         * * * * * * * * * * * * * 
                         *     V e c T o r 2     *        
                         *   L O A D   D A T A   * 
                         * * * * * * * * * * * * * 
 
                           LOAD CASE PARAMETERS 
                           ******************** 
 
Structure Title      (30 char. max.)     : B/S Beams 
Load Case Title      (30 char. max.)     : 100 kN 
Load Case File Name   (8 char. max.)     : A1 
No. of Loaded Joints                     : 0 
No. of Prescribed Support Displacements  : 0 
No. of Elements with Gravity Forces      : 0 
No. of Elements with Temperature Change  : 0 
No. of Elements with Concrete Prestrain  : 0 
No. of Elements with Ingress Pressure    : 0 
No. of Nodes with Thermal Load           : 76 
No. of Nodes with Lumped Masses          : 0 
No. of Nodes with Impulse Forces         : 0 
Ground Acceleration Record  (0-1)        : 0 
 
                              JOINT LOADS 
                              *********** 
<NOTE:>  UNITS:  KN 
<<<<< FORMAT >>>>> 
NODE    Fx    Fy    [ #NODE d(NODE) d(Fx) d(Fy) ] / 
/ 
                         SUPPORT DISPLACEMENTS 
                         ********************* 
<NOTE:> UNITS: MM 
<<<<< FORMAT >>>>> 
JNT  DOF  DISPL   [ #JNT d(JNT) ] / 
/ 
                             GRAVITY LOADS   
                             ************* 
<NOTE:>  UNITS:  KG/M3 
<<<<< FORMAT >>>>> 
ELMT  DENS  GX  GY  [#ELMT d(ELMT)] [ #ELMT d(ELMT)] / 
/ 
                           TEMPERATURE LOADS 
                           ***************** 
<NOTE:>  UNITS:  C 
<<<<< FORMAT >>>>> 
ELMT   TEMP   [ #ELMT d(ELMT) d(TEMP) ] [ #ELMT d(ELMT) d(TEMP) ] / 
/ 
                          CONCRETE PRESTRAINS 
                          ******************* 
<NOTE:>  UNITS:  me 
<<<<< FORMAT >>>>> 
ELMT  STRAIN   [ #ELMT d(ELMT) d(STRAIN) ] [ #ELMT d(ELMT) d(STRAIN) ]  / 
/ 
                           INGRESS PRESSURES  
                           ***************** 
<NOTE:>  UNITS:  MPa 
<<<<< FORMAT >>>>> 
ELMT PRESSURE  [ #ELMT d(ELMT) d(PRS) ] [ #ELMT d(ELMT) d(PRS) ]  / 
/ 
 
Type 1: Steady-State Model 
                          NODAL THERMAL LOADS 
                          *******************  
<NOTE:>  UNITS:  Sec, Degrees C 
<<<<< FORMAT >>>>> 
NODE  TYPE  Tm1 Tp1  Tm2 Tp2  Tm3 Tp3  [#NODE d(NODE)] [#NODE d(NODE)]  / 
  1  1    0 1000  43200  1000  45000 10    38 1 / 
381  1    100   0   43200    0   45000  0    38 1 /  
/ 
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Type 2: Three-Key-Node Linear Model 
                          NODAL THERMAL LOADS 
                          *******************  
<NOTE:>  UNITS:  Sec, Degrees C 
<<<<< FORMAT >>>>> 
NODE  TYPE  Tm1 Tp1  Tm2 Tp2  Tm3 Tp3  [#NODE d(NODE)] [#NODE d(NODE)]  / 
  1  2    2400 900  14400  1000  28800 100    38 1 / 
381  2    2400   0   14400    0   28800  0    38 1 /   
/ 
Type 3: Compartment Simplified Fire Model 
                          NODAL THERMAL LOADS 
                          *******************  
<NOTE:>  UNITS:  Sec, Degrees C 
<<<<< FORMAT >>>>> 
NODE  TYPE  Tm1 Tp1  Tm2 Tp2  Tm3 Tp3  [#NODE d(NODE)] [#NODE d(NODE)]  / 
  1  3    30 255  10800  1064  32400 1    38 1 / 
381  2    100   0   10800    0   32400  0    38 1 /   
/ 
Type 4: ASTM-E119 Fire Model 
 
                          NODAL THERMAL LOADS 
                          *******************  
<NOTE:>  UNITS:  Sec, Degrees C 
<<<<< FORMAT >>>>> 
NODE  TYPE  Tm1 Tp1  Tm2 Tp2  Tm3 Tp3  [#NODE d(NODE)] [#NODE d(NODE)]  / 
  1  4    100 255  10800  1064  4900 10    38 1 / 
381  2    100   0   10800    0   32400  0    38 1 /   
/ 
Type 5: ISO-834 Fire Model 
                          NODAL THERMAL LOADS 
                          *******************  
<NOTE:>  UNITS:  Sec, Degrees C 
<<<<< FORMAT >>>>> 
NODE  TYPE  Tm1 Tp1  Tm2 Tp2  Tm3 Tp3  [#NODE d(NODE)] [#NODE d(NODE)]  / 
  1  5    100 255  10800  1064  32400 10    38 1 / 
381  2    100   0   10800    0   32400  0    38 1 /   
/ 
 
                             LUMPED MASSES  
                             ************* 
<NOTE:>  UNITS:  kg, m/s 
<<<<< FORMAT >>>>> 
NODE  DOF-X  DOF-Y  MASS  GF-X  GF-Y  Vo-X  Vo-Y  [ #NODE d(NODE) ] / 
/ 
                            IMPULSE FORCES 
                            ************** 
<NOTE:>  UNITS:  Sec, kN 
<<<<< FORMAT >>>>> 
NODE  DOF  T1   F1   T2   F2   T3   F3   T4   F4  [ #NODE d(NODE) ] / 
/ 
                          GROUND ACCELERATION 
                          ******************* 
<NOTE:>  UNITS:  Sec, m/s2 
<<<<< FORMAT >>>>> 
TIME   ACC-X   ACC-Y 
/ 
 
 
<NOTES:> 
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VECTOR-I.JOB 
                               * * * * * * * * * * * * 
                               *     V e c T o r     * 
                               *   J O B   D A T A   * 
                               * * * * * * * * * * * * 
 
Job Title       (30 char. max.)        : Frame 
Job File Name   ( 8 char. max.)        : FI 
Date            (30 char. max.)        : Nov 13, 2003 
 
STRUCTURE DATA 
-------------- 
Structure Type                         : 2 
File Name       ( 8 char. max.)        : F1R 
 
LOADING DATA 
------------ 
No. of Load Stages                     : 60 
Starting Load Stage No.                : 1 
Load Series ID  ( 5 char. max.)        : FI 
 
Load   File Name         |                    Factors                     | 
Case   (8 char max)          Initial    Final    LS-Inc  Type Reps    C-Inc 
  1    F1T                    1.000     1.000     600.0    1    2     1.000       
  2    FG                     1.000     1.000     0.000    2    1     0.000       
  3    NULL                   0.000    40.000     0.500    1    1     0.000       
  4    NULL                   0.000     0.000     0.000    1    1     0.000      
  5    NULL                   0.000     0.000     0.000    1    1     0.000      
 
ANALYSIS PARAMETERS 
------------------- 
Analysis Mode                         (1-2) : 1 
Seed File Name                 (8 char max) : NULL 
Convergence Limit                    (>1.0) : 1.00001 
Averaging Factor                     (<1.0) : 0.5 
Maximum Iterations                          : 50 
Convergence Criteria                  (1-5) : 2 
Results Files                         (1-4) : 2 
Output Format                         (1-3) : 1 
 
MATERIAL BEHAVIOUR MODELS 
------------------------- 
Concrete Compression Base Curve       (0-3) : 1 
Concrete Compression Post-Peak        (0-3) : 1 
Concrete Compression Softening        (0-8) : 1 
Concrete Tension Stiffening           (0-5) : 1 
Concrete Tension Softening            (0-3) : 1 
Concrete Tension Splitting            (1-2) : 1 
Concrete Confined Strength            (0-2) : 1 
Concrete Dilatation                   (0-1) : 1 
Concrete Cracking Criterion           (0-4) : 1 
Concrete Crack Slip Check             (0-2) : 1 
Concrete Crack Width Check            (0-2) : 1 
Concrete Bond or Adhesion             (0-4) : 1 
Concrete Creep and Relaxation         (0-1) : 1 
Concrete Hysteresis                   (0-3) : 2 
Reinforcement Hysteresis              (0-3) : 1 
Reinforcement Dowel Action            (0-1) : 1 
Reinforcement Buckling                (0-1) : 1 
Element Strain Histories              (0-1) : 1 
Element Slip Distortions              (0-4) : 1 
Strain Rate Effects                   (0-1) : 1 
Structural Damping                    (0-1) : 1 
Geometric Nonlinearity                (0-1) : 1 
Crack Allocation Process              (0-1) : 1 
 
<NOTES:> 
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VECTOR-II.JOB 
 
                               * * * * * * * * * * * * 
                               *     V e c T o r     * 
                               *   J O B   D A T A   * 
                               * * * * * * * * * * * * 
 
Job Title       (30 char. max.)        : Frame 
Job File Name   ( 8 char. max.)        : FII 
Date            (30 char. max.)        : Nov 13, 2003 
 
STRUCTURE DATA 
-------------- 
Structure Type                         : 2 
File Name       ( 8 char. max.)        : F2R 
 
LOADING DATA 
------------ 
No. of Load Stages                     : 60 
Starting Load Stage No.                : 1 
Load Series ID  ( 5 char. max.)        : FII 
 
Load   File Name         |                    Factors                     | 
Case   (8 char max)          Initial    Final    LS-Inc  Type Reps    C-Inc 
  1    F2T                    1.000     1.000     600.0    1    2     1.000       
  2    FG                     1.000     1.000     0.000    2    1     0.000       
  3    NULL                   0.000    40.000     0.500    1    1     0.000       
  4    NULL                   0.000     0.000     0.000    1    1     0.000      
  5    NULL                   0.000     0.000     0.000    1    1     0.000      
 
ANALYSIS PARAMETERS 
------------------- 
Analysis Mode                         (1-2) : 1 
Seed File Name                 (8 char max) : NULL 
Convergence Limit                    (>1.0) : 1.00001 
Averaging Factor                     (<1.0) : 0.5 
Maximum Iterations                          : 50 
Convergence Criteria                  (1-5) : 2 
Results Files                         (1-4) : 2 
Output Format                         (1-3) : 1 
 
MATERIAL BEHAVIOUR MODELS 
------------------------- 
Concrete Compression Base Curve       (0-3) : 1 
Concrete Compression Post-Peak        (0-3) : 1 
Concrete Compression Softening        (0-8) : 1 
Concrete Tension Stiffening           (0-5) : 1 
Concrete Tension Softening            (0-3) : 1 
Concrete Tension Splitting            (1-2) : 1 
Concrete Confined Strength            (0-2) : 1 
Concrete Dilatation                   (0-1) : 1 
Concrete Cracking Criterion           (0-4) : 1 
Concrete Crack Slip Check             (0-2) : 1 
Concrete Crack Width Check            (0-2) : 1 
Concrete Bond or Adhesion             (0-4) : 1 
Concrete Creep and Relaxation         (0-1) : 1 
Concrete Hysteresis                   (0-3) : 2 
Reinforcement Hysteresis              (0-3) : 1 
Reinforcement Dowel Action            (0-1) : 1 
Reinforcement Buckling                (0-1) : 1 
Element Strain Histories              (0-1) : 1 
Element Slip Distortions              (0-4) : 1 
Strain Rate Effects                   (0-1) : 1 
Structural Damping                    (0-1) : 1 
Geometric Nonlinearity                (0-1) : 1 
 
Crack Allocation Process              (0-1) : 1 
 
<NOTES:> 
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VECTOR-III.JOB 
 
                               * * * * * * * * * * * * 
                               *     V e c T o r     * 
                               *   J O B   D A T A   * 
                               * * * * * * * * * * * * 
 
Job Title       (30 char. max.)        : Frame 
Job File Name   ( 8 char. max.)        : FIII 
Date            (30 char. max.)        : Nov 13, 2003 
 
STRUCTURE DATA 
-------------- 
Structure Type                         : 2 
File Name       ( 8 char. max.)        : F3R 
 
LOADING DATA 
------------ 
No. of Load Stages                     : 60 
Starting Load Stage No.                : 1 
Load Series ID  ( 5 char. max.)        : FIII 
 
Load   File Name         |                    Factors                     | 
Case   (8 char max)          Initial    Final    LS-Inc  Type Reps    C-Inc 
  1    F3T                    1.000     1.000     600.0    1    2     1.000       
  2    FD                     0.000     60.00     1.000    1    1     0.000       
  3    NULL                   0.000    40.000     1.000    1    1     0.000       
  4    NULL                   0.000     0.000     0.000    1    1     0.000      
  5    NULL                   0.000     0.000     0.000    1    1     0.000      
 
ANALYSIS PARAMETERS 
------------------- 
 
Analysis Mode                         (1-2) : 1 
Seed File Name                 (8 char max) : NULL 
Convergence Limit                    (>1.0) : 1.00001 
Averaging Factor                     (<1.0) : 0.5 
Maximum Iterations                          : 50 
Convergence Criteria                  (1-5) : 2 
Results Files                         (1-4) : 2 
Output Format                         (1-3) : 1 
 
MATERIAL BEHAVIOUR MODELS 
------------------------- 
Concrete Compression Base Curve       (0-3) : 1 
Concrete Compression Post-Peak        (0-3) : 1 
Concrete Compression Softening        (0-8) : 1 
Concrete Tension Stiffening           (0-5) : 1 
Concrete Tension Softening            (0-3) : 1 
Concrete Tension Splitting            (1-2) : 1 
Concrete Confined Strength            (0-2) : 1 
Concrete Dilatation                   (0-1) : 1 
Concrete Cracking Criterion           (0-4) : 1 
Concrete Crack Slip Check             (0-2) : 1 
Concrete Crack Width Check            (0-2) : 1 
Concrete Bond or Adhesion             (0-4) : 1 
Concrete Creep and Relaxation         (0-1) : 1 
Concrete Hysteresis                   (0-3) : 2 
Reinforcement Hysteresis              (0-3) : 1 
Reinforcement Dowel Action            (0-1) : 1 
Reinforcement Buckling                (0-1) : 1 
Element Strain Histories              (0-1) : 1 
Element Slip Distortions              (0-4) : 1 
Strain Rate Effects                   (0-1) : 1 
Structural Damping                    (0-1) : 1 
Geometric Nonlinearity                (0-1) : 1 
Crack Allocation Process              (0-1) : 1 
 
<NOTES:> 
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B1T.L2R 
                         * * * * * * * * * * * * * 
                         *     V e c T o r 2     *        
                         *   L O A D   D A T A   * 
                         * * * * * * * * * * * * * 
 
                           LOAD CASE PARAMETERS 
                           ******************** 
 
Structure Title      (30 char. max.)     : frame 
Load Case Title      (30 char. max.)     : temp 
Load Case File Name   (8 char. max.)     : F1T 
No. of Loaded Joints                     : 0 
No. of Prescribed Support Displacements  : 0 
No. of Elements with Gravity Forces      : 0 
No. of Elements with Temperature Change  : 0 
No. of Elements with Concrete Prestrain  : 0 
No. of Elements with Ingress Pressure    : 0 
No. of Nodes with Thermal Load           : 268 
No. of Nodes with Lumped Masses          : 0 
No. of Nodes with Impulse Forces         : 0 
Ground Acceleration Record  (0-1)        : 0 
 
                              JOINT LOADS 
                              *********** 
<NOTE:>  UNITS:  KN 
<<<<< FORMAT >>>>> 
NODE    Fx    Fy    [ #NODE d(NODE) d(Fx) d(Fy) ] / 
/ 
                         SUPPORT DISPLACEMENTS 
                         ********************* 
<NOTE:> UNITS: MM 
<<<<< FORMAT >>>>> 
JNT  DOF  DISPL   [ #JNT d(JNT) ] / 
/ 
                             GRAVITY LOADS   
                             ************* 
<NOTE:>  UNITS:  KG/M3 
<<<<< FORMAT >>>>> 
ELMT  DENS  GX  GY  [#ELMT d(ELMT)] [ #ELMT d(ELMT)] / 
/ 
                           TEMPERATURE LOADS 
                           ***************** 
<NOTE:>  UNITS:  C 
<<<<< FORMAT >>>>> 
ELMT   TEMP   [ #ELMT d(ELMT) d(TEMP) ] [ #ELMT d(ELMT) d(TEMP) ] / 
/ 
                          CONCRETE PRESTRAINS 
                          ******************* 
<NOTE:>  UNITS:  me 
<<<<< FORMAT >>>>> 
ELMT  STRAIN   [ #ELMT d(ELMT) d(STRAIN) ] [ #ELMT d(ELMT) d(STRAIN) ]  / 
/ 
                           INGRESS PRESSURES  
                           ***************** 
<NOTE:>  UNITS:  MPa 
<<<<< FORMAT >>>>> 
ELMT PRESSURE  [ #ELMT d(ELMT) d(PRS) ] [ #ELMT d(ELMT) d(PRS) ]  / 
/ 
                          NODAL THERMAL LOADS 
                          *******************  
<NOTE:>  UNITS:  Sec, Degrees C 
<<<<< FORMAT >>>>> 
NODE  TYPE  Tm1 Tp1  Tm2 Tp2  Tm3 Tp3  [#NODE d(NODE)] [#NODE d(NODE)]  / 
521 2 1 15 7200 95 28800 95 41 1 / 
572 2 1 15 7200 95 28800 95 64 11 / 
1276 2 1 15 7200 15 28800 15 10 11 / 
1366 2 1 15 7200 15 28800 15 9 1 / 
562 2 1 15 7200 15 28800 15 74 11 / 
103 2 1 15 7200 15 28800 15 9 51 / 
2 2 1 15 7200 15 28800 15 1 1 / 
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1 2 1 15 7200 15 28800 15 51 2 / 
102 2 1 15 7200 15 28800 15 9 51 / 
/ 
                             LUMPED MASSES  
                             ************* 
<NOTE:>  UNITS:  kg, m/s 
<<<<< FORMAT >>>>> 
NODE  DOF-X  DOF-Y  MASS  GF-X  GF-Y  Vo-X  Vo-Y  [ #NODE d(NODE) ] / 
/ 
                            IMPULSE FORCES 
                            ************** 
<NOTE:>  UNITS:  Sec, kN 
<<<<< FORMAT >>>>> 
NODE  DOF  T1   F1   T2   F2   T3   F3   T4   F4  [ #NODE d(NODE) ] / 
/ 
                          GROUND ACCELERATION 
                          ******************* 
<NOTE:>  UNITS:  Sec, m/s2 
<<<<< FORMAT >>>>> 
TIME   ACC-X   ACC-Y 
/ 
 
 
<NOTES:> 
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B2T.L2R 
                         * * * * * * * * * * * * * 
                         *     V e c T o r 2     *        
                         *   L O A D   D A T A   * 
                         * * * * * * * * * * * * * 
 
                           LOAD CASE PARAMETERS 
                           ******************** 
 
Structure Title      (30 char. max.)     : frame 
Load Case Title      (30 char. max.)     : temp 
Load Case File Name   (8 char. max.)     : F2T 
No. of Loaded Joints                     : 0 
No. of Prescribed Support Displacements  : 0 
No. of Elements with Gravity Forces      : 0 
No. of Elements with Temperature Change  : 0 
No. of Elements with Concrete Prestrain  : 0 
No. of Elements with Ingress Pressure    : 0 
No. of Nodes with Thermal Load           : 268 
No. of Nodes with Lumped Masses          : 0 
No. of Nodes with Impulse Forces         : 0 
Ground Acceleration Record  (0-1)        : 0 
 
                              JOINT LOADS 
                              *********** 
<NOTE:>  UNITS:  KN 
<<<<< FORMAT >>>>> 
NODE    Fx    Fy    [ #NODE d(NODE) d(Fx) d(Fy) ] / 
/ 
                         SUPPORT DISPLACEMENTS 
                         ********************* 
<NOTE:> UNITS: MM 
<<<<< FORMAT >>>>> 
JNT  DOF  DISPL   [ #JNT d(JNT) ] / 
/ 
                             GRAVITY LOADS   
                             ************* 
<NOTE:>  UNITS:  KG/M3 
<<<<< FORMAT >>>>> 
ELMT  DENS  GX  GY  [#ELMT d(ELMT)] [ #ELMT d(ELMT)] / 
/ 
                           TEMPERATURE LOADS 
                           ***************** 
<NOTE:>  UNITS:  C 
<<<<< FORMAT >>>>> 
ELMT   TEMP   [ #ELMT d(ELMT) d(TEMP) ] [ #ELMT d(ELMT) d(TEMP) ] / 
/ 
                          CONCRETE PRESTRAINS 
                          ******************* 
<NOTE:>  UNITS:  me 
<<<<< FORMAT >>>>> 
ELMT  STRAIN   [ #ELMT d(ELMT) d(STRAIN) ] [ #ELMT d(ELMT) d(STRAIN) ]  / 
/ 
                           INGRESS PRESSURES  
                           ***************** 
<NOTE:>  UNITS:  MPa 
<<<<< FORMAT >>>>> 
ELMT PRESSURE  [ #ELMT d(ELMT) d(PRS) ] [ #ELMT d(ELMT) d(PRS) ]  / 
/ 
                          NODAL THERMAL LOADS 
                          *******************  
<NOTE:>  UNITS:  Sec, Degrees C 
<<<<< FORMAT >>>>> 
NODE  TYPE  Tm1 Tp1  Tm2 Tp2  Tm3 Tp3  [#NODE d(NODE)] [#NODE d(NODE)]  / 
521 2 1 15 10800 45 28800 45 41 1 / 
572 2 1 15 10800 45 28800 45 64 11 / 
1276 2 1 15 7200 15 28800 15 10 11 / 
1366 2 1 15 7200 15 28800 15 9 1 / 
562 2 1 15 7200 15 28800 15 74 11 / 
103 2 1 15 7200 15 28800 15 9 51 / 
2 2 1 15 7200 15 28800 15 1 1 / 
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1 2 1 15 7200 15 28800 15 51 2 / 
102 2 1 15 7200 15 28800 15 9 51 / 
/ 
                             LUMPED MASSES  
                             ************* 
<NOTE:>  UNITS:  kg, m/s 
<<<<< FORMAT >>>>> 
NODE  DOF-X  DOF-Y  MASS  GF-X  GF-Y  Vo-X  Vo-Y  [ #NODE d(NODE) ] / 
/ 
                            IMPULSE FORCES 
                            ************** 
<NOTE:>  UNITS:  Sec, kN 
<<<<< FORMAT >>>>> 
NODE  DOF  T1   F1   T2   F2   T3   F3   T4   F4  [ #NODE d(NODE) ] / 
/ 
                          GROUND ACCELERATION 
                          ******************* 
<NOTE:>  UNITS:  Sec, m/s2 
<<<<< FORMAT >>>>> 
TIME   ACC-X   ACC-Y 
/ 
 
 
<NOTES:> 
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B3T.L2R 
                         * * * * * * * * * * * * * 
                         *     V e c T o r 2     *        
                         *   L O A D   D A T A   * 
                         * * * * * * * * * * * * * 
 
                           LOAD CASE PARAMETERS 
                           ******************** 
 
Structure Title      (30 char. max.)     : frame 
Load Case Title      (30 char. max.)     : temp 
Load Case File Name   (8 char. max.)     : F3T 
No. of Loaded Joints                     : 0 
No. of Prescribed Support Displacements  : 0 
No. of Elements with Gravity Forces      : 0 
No. of Elements with Temperature Change  : 0 
No. of Elements with Concrete Prestrain  : 0 
No. of Elements with Ingress Pressure    : 0 
No. of Nodes with Thermal Load           : 268 
No. of Nodes with Lumped Masses          : 0 
No. of Nodes with Impulse Forces         : 0 
Ground Acceleration Record  (0-1)        : 0 
 
                              JOINT LOADS 
                              *********** 
<NOTE:>  UNITS:  KN 
<<<<< FORMAT >>>>> 
NODE    Fx    Fy    [ #NODE d(NODE) d(Fx) d(Fy) ] / 
/ 
                         SUPPORT DISPLACEMENTS 
                         ********************* 
<NOTE:> UNITS: MM 
<<<<< FORMAT >>>>> 
JNT  DOF  DISPL   [ #JNT d(JNT) ] / 
/ 
                             GRAVITY LOADS   
                             ************* 
<NOTE:>  UNITS:  KG/M3 
<<<<< FORMAT >>>>> 
ELMT  DENS  GX  GY  [#ELMT d(ELMT)] [ #ELMT d(ELMT)] / 
/ 
                           TEMPERATURE LOADS 
                           ***************** 
<NOTE:>  UNITS:  C 
<<<<< FORMAT >>>>> 
ELMT   TEMP   [ #ELMT d(ELMT) d(TEMP) ] [ #ELMT d(ELMT) d(TEMP) ] / 
/ 
                          CONCRETE PRESTRAINS 
                          ******************* 
<NOTE:>  UNITS:  me 
<<<<< FORMAT >>>>> 
ELMT  STRAIN   [ #ELMT d(ELMT) d(STRAIN) ] [ #ELMT d(ELMT) d(STRAIN) ]  / 
/ 
                           INGRESS PRESSURES  
                           ***************** 
<NOTE:>  UNITS:  MPa 
<<<<< FORMAT >>>>> 
ELMT PRESSURE  [ #ELMT d(ELMT) d(PRS) ] [ #ELMT d(ELMT) d(PRS) ]  / 
/ 
                          NODAL THERMAL LOADS 
                          *******************  
<NOTE:>  UNITS:  Sec, Degrees C 
<<<<< FORMAT >>>>> 
NODE  TYPE  Tm1 Tp1  Tm2 Tp2  Tm3 Tp3  [#NODE d(NODE)] [#NODE d(NODE)]  / 
521 2 1 15 14400 75 28800 75 41 1 / 
572 2 1 15 14400 75 28800 75 64 11 / 
1276 2 1 15 7200 15 28800 15 10 11 / 
1366 2 1 15 7200 15 28800 15 9 1 / 
562 2 1 15 7200 15 28800 15 74 11 / 
103 2 1 15 7200 15 28800 15 9 51 / 
2 2 1 15 7200 15 28800 15 1 1 / 
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1 2 1 15 7200 15 28800 15 51 2 / 
102 2 1 15 7200 15 28800 15 9 51 / 
/ 
                             LUMPED MASSES  
                             ************* 
<NOTE:>  UNITS:  kg, m/s 
<<<<< FORMAT >>>>> 
NODE  DOF-X  DOF-Y  MASS  GF-X  GF-Y  Vo-X  Vo-Y  [ #NODE d(NODE) ] / 
/ 
                            IMPULSE FORCES 
                            ************** 
<NOTE:>  UNITS:  Sec, kN 
<<<<< FORMAT >>>>> 
NODE  DOF  T1   F1   T2   F2   T3   F3   T4   F4  [ #NODE d(NODE) ] / 
/ 
                          GROUND ACCELERATION 
                          ******************* 
<NOTE:>  UNITS:  Sec, m/s2 
<<<<< FORMAT >>>>> 
TIME   ACC-X   ACC-Y 
/ 
 
 
<NOTES:> 
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BD.L2R 
                         * * * * * * * * * * * * * 
                         *     V e c T o r 2     * 
                         *   L O A D   D A T A   * 
                         * * * * * * * * * * * * * 
 
                           LOAD CASE PARAMETERS 
                           ******************** 
 
Structure Title      (30 char. max.)     : Enter Structure Title 
Load Case Title      (30 char. max.)     : Enter load case title 
Load Case File Name   (8 char. max.)     : FD 
No. of Loaded Joints                     : 0 
No. of Prescribed Support Displacements  : 1 
No. of Elements with Gravity Loads       : 0 
No. of Elements with Temperature Loads   : 0 
No. of Elements with Concrete Prestrain  : 0 
No. of Elements with Ingress Pressure    : 0 
No. of Element Surfaces w/ Thermal Load  : 0 
No. of Nodes with Lumped Masses          : 0 
No. of Nodes with Impulse Forces         : 0 
Ground Acceleration Record  (0-1)        : 0 
 
                              JOINT LOADS 
                              *********** 
<NOTE:>  UNITS:  KIPS OR KN 
<<<<< FORMAT >>>>> 
NODE    Fx    Fy    [ #NODE d(NODE) d(Fx) d(Fy) ] / 
/ 
                         SUPPORT DISPLACEMENTS 
                         ********************* 
<NOTE:> UNITS: MM OR IN 
<<<<< FORMAT >>>>> 
JNT  DOF  DISPL   [ #JNT d(JNT) ] / 
738 1 1.000/ 
/ 
                             GRAVITY LOADS  
                             ************* 
<NOTE:>  UNITS:  KG/M3 
<<<<< FORMAT >>>>> 
ELMT  DENS  GX  GY  [#ELMT d(ELMT)] [ #ELMT d(ELMT)] / 
/ 
                           TEMPERATURE LOADS 
                           ***************** 
<NOTE:>  UNITS:  F OR C 
<<<<< FORMAT >>>>> 
ELMT   TEMP   [ #ELMT d(ELMT) d(TEMP) ] [ #ELMT d(ELMT) d(TEMP) ] / 
/ 
                          CONCRETE PRESTRAINS 
                          ******************* 
<NOTE:>  UNITS:  me 
<<<<< FORMAT >>>>> 
ELMT  STRAIN   [ #ELMT d(ELMT) d(STRAIN) ] [ #ELMT d(ELMT) d(STRAIN) ]  / 
/ 
                           INGRESS PRESSURES 
                           ***************** 
<NOTE:>  UNITS:  MPa 
<<<<< FORMAT >>>>> 
ELMT PRESSURE  [ #ELMT d(ELMT) d(PRS) ] [ #ELMT d(ELMT) d(PRS) ]  / 
/ 
                         SURFACE THERMAL LOADS 
                         ********************* 
<NOTE:>  UNITS:  Sec, Degrees C 
<<<<< FORMAT >>>>> 
NODE1 NODE2  Tm1 Tp1  Tm2 Tp2  Tm3 Tp3  [#SURF d(NODE)] [#SURF d(NODE)]  / 
/ 
                             LUMPED MASSES 
                             ************* 
<NOTE:>  UNITS:  kg, m/s 
<<<<< FORMAT >>>>> 
NODE  DOF-X  DOF-Y  MASS  GF-X  GF-Y  Vo-X  Vo-Y  [ #NODE d(NODE) ] / 
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/ 
                            IMPULSE FORCES 
                            ************** 
<NOTE:>  UNITS:  Sec, kN 
<<<<< FORMAT >>>>> 
NODE  DOF  T1   F1   T2   F2   T3   F3   T4   F4  [ #NODE d(NODE) ] / 
/ 
                          GROUND ACCELERATION 
                          ******************* 
<NOTE:>  UNITS:  Sec, G 
<<<<< FORMAT >>>>> 
TIME   ACC-X   ACC-Y 
/ 
 
 
<<< LOAD FILE NOTES >>> 
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BG.L2R 
                         * * * * * * * * * * * * * 
                         *     V e c T o r 2     *        
                         *   L O A D   D A T A   * 
                         * * * * * * * * * * * * * 
 
                           LOAD CASE PARAMETERS 
                           ******************** 
 
Structure Title      (30 char. max.)     : Frame 
Load Case Title      (30 char. max.)     : Gravity 
Load Case File Name   (8 char. max.)     : BG 
No. of Loaded Joints                     : 0 
No. of Prescribed Support Displacements  : 0 
No. of Elements with Gravity Forces      : 1240 
No. of Elements with Temperature Change  : 0 
No. of Elements with Concrete Prestrain  : 0 
No. of Elements with Ingress Pressure    : 0 
No. of Nodes with Thermal Load           : 0 
No. of Nodes with Lumped Masses          : 0 
No. of Nodes with Impulse Forces         : 0 
Ground Acceleration Record  (0-1)        : 0 
 
                              JOINT LOADS 
                              *********** 
<NOTE:>  UNITS:  KN 
<<<<< FORMAT >>>>> 
NODE    Fx    Fy    [ #NODE d(NODE) d(Fx) d(Fy) ] / 
/ 
                         SUPPORT DISPLACEMENTS 
                         ********************* 
<NOTE:> UNITS: MM 
<<<<< FORMAT >>>>> 
JNT  DOF  DISPL   [ #JNT d(JNT) ] / 
/ 
                             GRAVITY LOADS   
                             ************* 
<NOTE:>  UNITS:  KG/M3 
<<<<< FORMAT >>>>> 
ELMT  DENS  GX  GY  [#ELMT d(ELMT)] [ #ELMT d(ELMT)] / 
  1   1   0   1   1240  1 / 
/ 
                           TEMPERATURE LOADS 
                           ***************** 
<NOTE:>  UNITS:  C 
<<<<< FORMAT >>>>> 
ELMT   TEMP   [ #ELMT d(ELMT) d(TEMP) ] [ #ELMT d(ELMT) d(TEMP) ] / 
/ 
                          CONCRETE PRESTRAINS 
                          ******************* 
<NOTE:>  UNITS:  me 
<<<<< FORMAT >>>>> 
ELMT  STRAIN   [ #ELMT d(ELMT) d(STRAIN) ] [ #ELMT d(ELMT) d(STRAIN) ]  / 
/ 
                           INGRESS PRESSURES  
                           ***************** 
<NOTE:>  UNITS:  MPa 
<<<<< FORMAT >>>>> 
ELMT PRESSURE  [ #ELMT d(ELMT) d(PRS) ] [ #ELMT d(ELMT) d(PRS) ]  / 
/ 
                          NODAL THERMAL LOADS 
                          *******************  
<NOTE:>  UNITS:  Sec, Degrees C 
<<<<< FORMAT >>>>> 
NODE  TYPE  Tm1 Tp1  Tm2 Tp2  Tm3 Tp3  [#NODE d(NODE)] [#NODE d(NODE)]  / 
/ 
                             LUMPED MASSES  
                             ************* 
<NOTE:>  UNITS:  kg, m/s 
<<<<< FORMAT >>>>> 
NODE  DOF-X  DOF-Y  MASS  GF-X  GF-Y  Vo-X  Vo-Y  [ #NODE d(NODE) ] / 
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/ 
                            IMPULSE FORCES 
                            ************** 
<NOTE:>  UNITS:  Sec, kN 
<<<<< FORMAT >>>>> 
NODE  DOF  T1   F1   T2   F2   T3   F3   T4   F4  [ #NODE d(NODE) ] / 
/ 
                          GROUND ACCELERATION 
                          ******************* 
<NOTE:>  UNITS:  Sec, m/s2 
<<<<< FORMAT >>>>> 
TIME   ACC-X   ACC-Y 
/ 
 
 
 
<NOTES:>
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AAppppeennddiixx  CC      VV22HHEEAATT  SSoouurrccee  CCooddee  
      SUBROUTINE HEAT(MOPT,TTIME,STIME,DTIME) 
C     -------------------------------------- 
C     This subprogram computes element temperatures based on two- 
C     dimensional transient nonlinear heat flow analysis in which 
C     bilinear 4-node quadrilateral and linear 3-node triangular 
C     elements are employed. 
C 
      PARAMETER (MELM=5000,MTYP=25,MJNT=5200,MBOUN=299,MPROF=99999) 
      IMPLICIT REAL (A-H,O-Z) 
      COMMON /STR PARA/STRID,SUNITS,NRC,NS,NB,NREC,NQUAD,NTRIG,NTRUSS, 
     *        NLINK,NCONT,NJ,NR,NELEMT 
      COMMON /CONC SPECIFICATIONS/FC,FT,EC,E0,MU,CEC,T,AGG, 
     *        SCRX,SCRY,SMA,URF,DENS,DFSV,NSC,TBS 
      COMMON /LTYPE/ LTYP 
      COMMON /INCIDENCES/INC,MAT 
      COMMON /COORDINATES/X,Y 
      COMMON /THERMAL1/ TEMPN,TEMPL,TEMP 
      COMMON /THERMAL3/ NTHER,NLOAD,TLOAD 
      COMMON /REDUCTION/ TRC,TRS 
      COMMON /QUAD/ QINC,QAGS,THK,AGS,CGX,CGY 
 
      INTEGER MOP 
      INTEGER NRC,NS,NB,NREC,NQUAD,NTRIG,NTRUSS,NLINK,NCONT 
      INTEGER NJ,NR,NELEMT 
      INTEGER INC(MELM,6),MAT(MELM),LTYP(MELM) 
      INTEGER NSC(MTYP) 
      INTEGER NTHER,NLOAD(MJNT) 
      INTEGER QINC(MELM,4) 
      REAL QAGS(MELM,2),THK(MELM) 
      REAL AGS(MELM),CGX(MELM),CGY(MELM) 
      REAL FC(MTYP),FT(MTYP),EC(MTYP),MU(MTYP),CEC(MTYP),T(MTYP) 
      REAL SCRX(MTYP),SCRY(MTYP),SMA(MTYP),AGG(MTYP) 
      REAL URF(MTYP),DENS(MTYP),E0(MTYP),DFSV(MTYP) 
      REAL TBS(MTYP) 
      REAL X(MJNT),Y(MJNT) 
      REAL TEMPL(MELM),TEMP(MELM),TEMPN(MJNT) 
      REAL TLOAD(MJNT) 
      REAL TTIME,STIME,DTIME 
      REAL TRC(MELM,4), TRS(MELM,4) 
      CHARACTER*30 STRID 
      CHARACTER*10 SUNITS 
 
C     INTRODUCED IN PART 1 
      INTEGER NNPEL(MELM),NCONC(MELM,4),MTYPE(MELM),ECONC(MELM) 
      INTEGER NITER,NMATR,ITRAN,NNPFC,NPOIN,NELEM 
      REAL ALPHA,TOLER,RELAX,COORD(MJNT,2),DEN(MTYP),DIFS(MTYP) 
C     INTRODUCED IN PART 2 
      INTEGER NFIXB,NFIXD(MBOUN),IFFIX(MJNT) 
      INTEGER NPROF,NCOLM(MJNT),NDIAG(MJNT) 
      REAL FIXED(MBOUN),TEMPR(MJNT),TFIXD(MJNT) 
C     INTRODUCED IN PART 3 OR 4 
      REAL ASTIF(4,4),AMASS(4,4),TLAST(MJNT),GSTIF(MPROF),EFORC(4) 
      REAL FORCE(MJNT),TEMP1(4,4),RVECT(4) 
      INTEGER NDFEL(4) 
C     LOCAL VARIABLES 
      INTEGER I,IELEM,INOD,IMAT,IBC,J,JELEM,KELEM 
C 
C     PART  11111             INITIALIZATION OPERATION                11111 
C 
C *** MESH INFORMATION ADAPTION 
      NNPFC=2 
      NPOIN=NJ 
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      NMATR=NRC 
 
      IELEM=0 
      DO 4 JELEM=1,NELEMT 
        IF ((LTYP(JELEM).LE.3) .AND. (LTYP(JELEM).GE.1)) THEN 
          IELEM=IELEM+1 
          ECONC(IELEM)=JELEM 
        ENDIF 
  4   CONTINUE 
      NELEM=IELEM 
 
      DO 1 IELEM=1,NELEM 
        JELEM=ECONC(IELEM) 
        IF ((LTYP(JELEM).EQ.1).OR.(LTYP(JELEM).EQ.2)) THEN 
         NNPEL(IELEM)=4 
        ELSEIF (LTYP(JELEM).EQ.3) THEN 
         NNPEL(IELEM)=3 
        ENDIF 
      MTYPE(IELEM)=MAT(JELEM) 
  1   CONTINUE 
 
      DO 2 IELEM=1,NELEM 
        JELEM=ECONC(IELEM) 
        DO 3 INOD=1,NNPEL(IELEM) 
         IF (LTYP(JELEM).NE.2) THEN 
          NCONC(IELEM,INOD)=INC(JELEM,INOD) 
         ELSE 
          NCONC(IELEM,INOD)=QINC(JELEM,INOD) 
         ENDIF 
  3     CONTINUE 
  2   CONTINUE 
 
      DO INOD=1,NPOIN 
        COORD(INOD,1)=X(INOD)/1000 
        COORD(INOD,2)=Y(INOD)/1000 
      END DO 
 
      IF (NELEM.NE.NREC+NQUAD+NTRIG) THEN 
      WRITE (*,*) 'MESH-IN PROCESS IN V2HEAT IS WRONG!' 
      STOP 
      END IF 
 
      IF (TTIME.LE.1.0E-3) THEN 
       DO I=1,NPOIN 
        TEMPR(I)=0.0 
       END DO 
       GOTO 501 
      ENDIF 
 
C *** CONTROAL INDICES SPECIFICATION 
 
      !ALPHA:TIME STEPPING FACTOR CORRESPONDS TO: 
C            1/2: CRANK-NICOLSON SCHEME (ACCURATE) 
C            2/3: GALERKIN SCHEME (STABLE) 
      ALPHA=2.0/3 
      NITER=100 
      TOLER=1.E-6 
      !RELAX:RELAXATION FACTOR FOR NONLINEAR PROBLEM 
      RELAX=1.0 
C *** MATERIAL PROPERTIES ADAPTION 
      DO IMAT=1,NMATR 
      DEN(IMAT)=DENS(IMAT) 
      DIFS(IMAT)=DFSV(IMAT) 
      END DO 
C *** ADD INTERNAL HEAT RESOURCE HERE IF APPLICABLE 
C 
      IF (MOPT.EQ.1) THEN 
        ITRAN=0 
      ELSE 
        ITRAN=1 
      ENDIF 
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C 
C     PART 22222     PRESCRIBE INITIAL AND BOUNDARY CONDITIONS        22222 
C 
C *** DIRICHLET BOUNDARY CONDITIONS (FIXED TEMPERATURE) 
C     TREATED AS NODAL THERMAL LOAD IN DR. VECCHIO'S DATE DESIGN 
      NFIXB=NTHER 
      DO 205 IBC=1,NTHER 
      NFIXD(IBC)=NLOAD(IBC) 
      FIXED(IBC)=TLOAD(IBC) 
 205  CONTINUE 
C *** ADD NEUMANN BOUNDARY CONDITIONS (FIXED FLUX) HERE IF APPLICABLE 
C *** INITIAL TEMPERATURE FIELD FOR NON-LINEAR AND/OR TRANSIENT PROBLEMS 
      DO 206 INOD=1,NPOIN 
      TEMPR(INOD)=TEMPN(INOD) 
 206  CONTINUE 
      DO 207 IBC=1,NFIXB 
      TEMPR(NFIXD(IBC))=FIXED(IBC) 
 207  CONTINUE 
C *** SET UP ARRAYS FOR FIXED BCs AND INITIALISE VECTOR NCOLM 
      DO 208 I=1,NPOIN 
      IFFIX(I)=0 
      NCOLM(I)=1 
 208  CONTINUE 
      DO 209 I=1,NFIXB 
      NOD=NFIXD(I) 
      IFFIX(NOD)=1 
      TFIXD(NOD)=FIXED(I) 
 209  CONTINUE 
C *** SET UP THE VECTOR NCOLM,NDIAG AND CALCULATE NPROF 
      CALL DIAGNL(MELM,NELEM,NPOIN,NNPEL,MJNT,NCOLM, 
     -            NCONC,NDIAG,NPROF,IFFIX) 
      IF (ITRAN.EQ.1) GOTO 300 
C 
C     PART 33333          PERFORM  STEADY-STATE  ANALYSIS             33333 
C 
      CALL STEADY(MELM,MJNT,MTYP,MPROF,TOLER,RELAX, 
     -            ITRAN,NITER,NELEM,NPOIN,NNPEL, 
     -            NPROF,NDFEL,NCONC,NDIAG,IFFIX,TFIXD, 
     -            ASTIF,AMASS,GSTIF,EFORC,FORCE,TLAST, 
     -            TEMPR,COORD,DEN,DIFS,MTYPE) 
      GOTO 501 
C 
C     PART 44444              PERFORM  TRANSIENT  ANALYSIS            44444 
C 
 300  CONTINUE 
      CALL TRANSI(MELM,MJNT,MPROF,TOLER,ITRAN,NITER, 
     -            NELEM,NPOIN,NNPEL,NPROF,NDFEL,NCONC, 
     -            NDIAG,IFFIX,TFIXD,ASTIF,AMASS,GSTIF, 
     -            EFORC,FORCE,TLAST,TEMPR,COORD,DTIME, 
     -            ALPHA,TEMP1,RVECT,MTYP,MTYPE,DEN,DIFS) 
C 
C     PART 55555     OUTPUT RESULTS(TEMP. ON NODES AND CENTROIDS)     55555 
C 
C     RESTORE RESULTS IN 'TEMPN' FROM 'TEMPR' 
 501  CONTINUE 
      DO INOD=1,NPOIN 
      TEMPN(INOD)=TEMPR(INOD) 
C      IF (TEMPN(INOD).LT.1.E-6) TEMPN(INOD)=0.0 
      END DO 
C     CALCULATE TEMPERATURE ON CENTROID OF ELEMENTS 
      IF (STIME.LT.TTIME) GOTO 502 
      IELEM=0 
      DO 8 JELEM=1,NELEMT 
        IF ((LTYP(JELEM).LE.4) .AND. (LTYP(JELEM).GE.1)) THEN 
          IELEM=IELEM+1 
          ECONC(IELEM)=JELEM 
        ENDIF 
  8   CONTINUE 
      NELEM=IELEM 
      DO 5 IELEM=1,NELEM 
        JELEM=ECONC(IELEM) 
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        IF ((LTYP(JELEM).EQ.1).OR.(LTYP(JELEM).EQ.2)) THEN 
         NNPEL(IELEM)=4 
        ELSEIF (LTYP(JELEM).EQ.3) THEN 
         NNPEL(IELEM)=3 
        ELSEIF (LTYP(I).EQ.4) THEN 
         NNPEL(IELEM)=2 
        ENDIF 
  5   CONTINUE 
      DO 6 IELEM=1,NELEM 
        JELEM=ECONC(IELEM) 
        DO 7 INOD=1,NNPEL(IELEM) 
         IF (LTYP(JELEM).NE.2) THEN 
          NCONC(IELEM,INOD)=INC(JELEM,INOD) 
         ELSE 
          NCONC(IELEM,INOD)=QINC(JELEM,INOD) 
         ENDIF 
  7     CONTINUE 
  6   CONTINUE 
      IF (NELEM.NE.NREC+NQUAD+NTRIG+NTRUSS) THEN 
      WRITE (*,*) 'MESH-OUT PROCESS IN V2HEAT IS WRONG!' 
      STOP 
      END IF 
      DO 92 I=1,NELEM 
       JELEM=ECONC(I) 
       TEMPL(I)=0.0 
       DO 93 J=1,NNPEL(I) 
        NOD=NCONC(I,J) 
        TEMPL(JELEM)=TEMPL(JELEM)+TEMPN(NOD)/NNPEL(I) 
  93   CONTINUE 
  92  CONTINUE 
C 
 502  RETURN 
      END 
 
      SUBROUTINE DIAGNL(MELM,NELEM,NPOIN,NNPEL,MJNT,NCOLM, 
     -                  NCONC,NDIAG,NPROF,IFFIX) 
C     ------------------------------------------------------- 
C                                                                       DIAGNL 
C     Set up the vector 'NDIAG' storing the diagonal dof number for     DIAGNL 
C     each column of the global stiffness matrix.                       DIAGNL 
C                                                                       DIAGNL 
C 
      IMPLICIT REAL(A-H,O-Z) 
      INTEGER NCONC(MELM,4),NCOLM(MJNT),NDIAG(MJNT), 
     -          IFFIX(MJNT),NNPEL(MELM) 
      DO 45 I=1,NELEM 
      N1=NPOIN 
       DO 46 J=1,NNPEL(I) 
       K=NCONC(I,J) 
       IF (IFFIX(K).EQ.1) GOTO 47 
       IF (K.LT.N1) N1=K 
   47  CONTINUE 
   46  CONTINUE 
       DO 48 J=1,NNPEL(I) 
       K=NCONC(I,J) 
       IF (IFFIX(K).EQ.1) GOTO 49 
       N2=K-N1+1 
       IF (NCOLM(K).LT.N2) NCOLM(K)=N2 
   49  CONTINUE 
   48  CONTINUE 
   45 CONTINUE 
      NDIAG(1)=1 
      DO 50 J=2,NPOIN 
       NDIAG(J)=NDIAG(J-1)+NCOLM(J) 
   50 CONTINUE 
      NPROF=NDIAG(NPOIN) 
C 
      RETURN 
      END 
 
      SUBROUTINE STEADY (MELM,MJNT,MTYP,MPROF,TOLER,RELAX, 
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     -                   ITRAN,NITER,NELEM,NPOIN,NNPEL, 
     -                   NPROF,NDFEL,NCONC,NDIAG,IFFIX,TFIXD, 
     -                   ASTIF,AMASS,GSTIF,EFORC,FORCE,TLAST, 
     -                   TEMPR,COORD,DEN,DIFS,MTYPE) 
C     -------------------------------------------------------- 
C                                                                       STEADY 
C     This subroutine performs steady state analysis                    STEADY 
C                                                                       STEADY 
      IMPLICIT REAL(A-H,O-Z) 
      REAL ASTIF(4,4),AMASS(4,4),DEN(MTYP),DIFS(MTYP) 
      REAL EFORC(4),XCORD(4),YCORD(4),TFIXD(MJNT),COORD(MJNT,2), 
     -     GSTIF(MPROF),FORCE(MJNT),TLAST(MJNT),TEMPR(MJNT) 
      INTEGER IFFIX(MJNT),NCONC(MELM,4),NDFEL(4),NDIAG(MJNT), 
     -        NNPEL(MELM),MTYPE(MELM) 
C 
C ***  PERFORM  STEADY STATE  ANALYSIS 
C 
      DO 119 ITER=1,NITER 
      JITER=ITER 
      DO 120 I=1,NPOIN 
      FORCE(I)=0.0 
      TLAST(I)=TEMPR(I) 
  120 CONTINUE 
      DO 121 I=1,NPROF 
      GSTIF(I)=0.0 
  121 CONTINUE 
      DO 122 IELEM=1,NELEM 
      IMATR=MTYPE(IELEM) 
      CALL PROPTY(IELEM,MELM,MJNT,NNPEL,TEMPR,DEN,DIFS,MTYP, 
     -            NCONC,DENST,CONDT,DIFST,CAPCT,IMATR) 
      DO 123 I=1,NNPEL(IELEM) 
      NDFEL(I)=NCONC(IELEM,I) 
      ID=NDFEL(I) 
      EFORC(I)=0.0 
      XCORD(I)=COORD(ID,1) 
      YCORD(I)=COORD(ID,2) 
      DO 124 J=1,NNPEL(IELEM) 
      ASTIF(I,J)=0.0 
  124 CONTINUE 
  123 CONTINUE 
C 
C *** CONSTRUCT ELEMENT STIFFNESS MATRIX 
C 
      CALL STIFFN (MELM,IELEM,NNPEL,ITRAN,DENST,CONDT, 
     -             CAPCT,ASTIF,AMASS,XCORD,YCORD) 
C 
C *** CALCULATE NEUMANN BOUNDARY CONDITION EFFECTS ON THE FORCE VECTOR 
C 
C 
C *** ADD (ELEMENT'S) INTERNAL VOLUMETRIC HEAT RESOURCE TO THE FORCE VECTOR 
C 
C 
C *** TRANSFER ELEMENT FORCES TO GLOBAL FORCE VECTOR 
C 
      DO 125 J=1,NNPEL(IELEM) 
      NOD=NDFEL(J) 
      FORCE(NOD)=FORCE(NOD)+EFORC(J) 
  125 CONTINUE 
C 
C *** MODIFY FORCE VECTOR TO ACCOUNT FOR FIXED TEMPERATURE NODES 
C 
      DO 126 J=1,NNPEL(IELEM) 
      IROW=NDFEL(J) 
      IF (IFFIX(IROW).EQ.1) GOTO 106 
      DO 127 K=1,NNPEL(IELEM) 
      ICOL=NDFEL(K) 
      IF (IFFIX(ICOL).EQ.1) THEN 
      FORCE(IROW)=FORCE(IROW)-ASTIF(J,K)*TFIXD(ICOL) 
      ENDIF 
  127 CONTINUE 
  106 CONTINUE 
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  126 CONTINUE 
C 
C *** ASSEMBLE INTO GLOBAL MATRIX IN VECTOR FORM 
C 
      DO 128 J=1,NNPEL(IELEM) 
      DO 129 K=J,NNPEL(IELEM) 
      IROW=NDFEL(J) 
      IF (IFFIX(IROW).EQ.1) GOTO 103 
      ICOL=NDFEL(K) 
      IF (IFFIX(ICOL).EQ.1) GOTO 103 
      IF (IROW.LE.ICOL) GOTO 104 
      ITEM=IROW 
      IROW=ICOL 
      ICOL=ITEM 
  104 IRC=NDIAG(ICOL)-ICOL+IROW 
      GSTIF(IRC)=GSTIF(IRC)+ASTIF(J,K) 
  103 CONTINUE 
  129 CONTINUE 
  128 CONTINUE 
  122 CONTINUE 
C 
C *** SOLVE THE FINAL SYSTEM USING PROFILE SOLVER 
C 
C 1.  SET DIAGONAL ELEMENTS OF GSTIF CORRESPONDING TO FIXED TEMPERATURE 
C     NODES EQUAL TO UNITY AND THE FORCE VECTOR TO THE FIXED VALUE 
C 
      DO 130 I=1,NPOIN 
      IF (IFFIX(I).EQ.1) THEN 
      J=NDIAG(I) 
      GSTIF(J)=1.0 
      FORCE(I)=TFIXD(I) 
      TEMPR(I)=TFIXD(I) 
      ENDIF 
  130 CONTINUE 
C 
C 2.  SOLVE THE FINAL SYSTEM USING PROFILE SOLVER 
      CALL PROFAC (MPROF,MJNT,NPOIN,GSTIF,NDIAG) 
      CALL PROSOL (MPROF,MJNT,NPOIN,GSTIF,FORCE,TEMPR,NDIAG) 
C       PERFORMS RELAXATION FORMULA FOR NON-LINEAR PROBLEM 
      DO 118 I=1,NPOIN 
      TEMPR(I)=RELAX*TEMPR(I)+(1.0-RELAX)*TLAST(I) 
  118 CONTINUE 
C 
C *** CHECK FOR CONVERGENCE OF ITERATION 
C 
      IF (ITER.EQ.1) THEN 
       CALL L2NORM (MJNT,NPOIN,TNRM1,TEMPR) 
      ELSE 
       CALL L2NORM (MJNT,NPOIN,TNRM2,TEMPR) 
       CONVG=ABS(TNRM2-TNRM1)/TNRM2 
       IF (CONVG.LE.TOLER) GOTO 150 
       TNRM1=TNRM2 
      ENDIF 
  119 CONTINUE 
      WRITE (*,151) 
      STOP 3333 
  150 CONTINUE 
  151 FORMAT (//' ','HEAT FLOW SOLUTION HAS FAILED TO CONVERGE') 
      RETURN 
      END 
 
      SUBROUTINE PROPTY(IELEM,MELM,MJNT,NNPEL,TEMPR,DEN,DIFS,MTYP, 
     -                  NCONC,DENST,CONDT,DIFST,CAPCT,IMATR) 
C     ------------------------------------------------------------ 
C 
C     This subroutine calculates temperature-dependent properties 
C 
C 
C     DENST : Element average density value 
C     CONDT : Element average conductivity value 
C     DIFST : Element average diffusivity value 
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C     CAPCT : Element average specific heat value 
      IMPLICIT REAL(A-H,O-Z) 
      INTEGER NNPEL(MELM),NCONC(MELM,4) 
      REAL DEN(MTYP),DIFS(MTYP),TEMPR(MJNT) 
C 
      TEMPT=0.0 
      DO 41 I=1, NNPEL(IELEM) 
      TEMPT=TEMPT+TEMPR(NCONC(IELEM,I))/NNPEL(IELEM) 
   41 CONTINUE 
C 
      DENST=DEN(IMATR) 
      DIFST=DIFS(IMATR) 
      DIFST=9.16391E-7*TEMPT**2-0.00136982*TEMPT+0.909062 
      CONDT=1.36469E-6*TEMPT**2-0.00256908*TEMPT+2.24266 
      DIFST=DIFST/1.0E6 
      CAPCT=CONDT/DENST/DIFST 
      RETURN 
      END 
 
      SUBROUTINE STIFFN (MELM,IELEM,NNPEL,ITRAN,DENST,CONDT, 
     -                   CAPCT,ASTIF,AMASS,XCORD,YCORD) 
C     ------------------------------------------------------- 
C                                                                       STIFFN 
C     This subroutine constructs element [K] & [C] matrices             STIFFN 
C                                                                       STIFFN 
C 
      IMPLICIT REAL(A-H,O-Z) 
      REAL ASTIF(4,4),AMASS(4,4),XCORD(4),YCORD(4) 
      INTEGER NNPEL(MELM) 
C 
C *** CONSTRUCT STIFFNESS AND MASS MATRICES 
C 
      IF (NNPEL(IELEM).EQ.4) THEN 
C     !RECTANGULAR SIMPLIFIED SCHEME 
        CALL SSTIF4(ASTIF,XCORD,YCORD,CONDT) 
        IF (ITRAN.EQ.1) THEN 
        CALL SMASS4(AMASS,XCORD,YCORD,DENST,CAPCT) 
        ENDIF 
      ELSEIF (NNPEL(IELEM).EQ.3) THEN 
        C1=YCORD(2)-YCORD(3) 
        C2=YCORD(3)-YCORD(1) 
        C3=YCORD(1)-YCORD(2) 
        D1=XCORD(3)-XCORD(2) 
        D2=XCORD(1)-XCORD(3) 
        D3=XCORD(2)-XCORD(1) 
        AREA=0.5*(D2*C1-D1*C2) 
        FACTK=CONDT/(4*AREA) 
        ASTIF(1,1)=(C1*C1+D1*D1)*FACTK 
        ASTIF(1,2)=(C1*C2+D1*D2)*FACTK 
        ASTIF(1,3)=(C1*C3+D1*D3)*FACTK 
        ASTIF(2,2)=(C2*C2+D2*D2)*FACTK 
        ASTIF(2,3)=(C2*C3+D2*D3)*FACTK 
        ASTIF(3,3)=(C3*C3+D3*D3)*FACTK 
        IF (ITRAN.EQ.1) THEN 
        FACTC=DENST*CAPCT*AREA/12.0 
        AMASS(1,1)=2*FACTC 
        AMASS(1,2)=1*FACTC 
        AMASS(1,3)=1*FACTC 
        AMASS(2,2)=2*FACTC 
        AMASS(2,3)=1*FACTC 
        AMASS(3,3)=2*FACTC 
        ENDIF 
      ENDIF 
C     FILL IN THE SYMMETRIC PART OF MATRICES 
      DO 51 I=2,NNPEL(IELEM) 
      DO 52 J=1,(I-1) 
      ASTIF(I,J)=ASTIF(J,I) 
      IF (ITRAN.EQ.1) AMASS(I,J)=AMASS(J,I) 
   52 CONTINUE 
   51 CONTINUE 
C 
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      RETURN 
      END 
      SUBROUTINE SSTIF4(ASTIF,XCORD,YCORD,CONDT) 
C     ------------------------------------------- 
C                                                                       SSTIF4 
C     This subroutine generates the "analytical" stiffness matrix       SSTIF4 
C     for a four node quadrilateral in plane strain based on NIP=4.     SSTIF4 
C                                                                       SSTIF4 
      IMPLICIT REAL(A-H,O-Z) 
      REAL ASTIF(4,4),XCORD(4),YCORD(4) 
      REAL X1,X2,X3,X4,Y1,Y2,Y3,Y4,A2,A2ST3, 
     _     ALPH,BETA,F1,F2,S1,S2,S3,S4,T1,T2,T3,T4 
C 
      X1=XCORD(1) 
      X2=XCORD(2) 
      X3=XCORD(3) 
      X4=XCORD(4) 
      Y1=YCORD(1) 
      Y2=YCORD(2) 
      Y3=YCORD(3) 
      Y4=YCORD(4) 
C 
      A2=(X4-X2)*(Y3-Y1)-(X3-X1)*(Y4-Y2) 
      A2ST3=3.0*A2*A2 
C 
      CALL GRUPA(X1,X2,X3,X4,Y1,Y2,Y3,Y4,S1,S2,S3,S4, 
     -           T1,T2,T3,T4,F1,F2) 
      ALPH=CONDT*(A2*(S1+S2)+F1*(S3+S4)) 
      BETA=CONDT*(A2*(T1+T2)+F2*(T3+T4)) 
      ASTIF(1,1)=-(ALPH/(A2ST3-F1**2)+BETA/(A2ST3-F2**2))*0.5 
C 
      CALL GRUPA(X2,X3,X4,X1,Y2,Y3,Y4,Y1,S1,S2,S3,S4, 
     -           T1,T2,T3,T4,F1,F2) 
      ALPH=CONDT*(A2*(S1+S2)+F1*(S3+S4)) 
      BETA=CONDT*(A2*(T1+T2)+F2*(T3+T4)) 
      ASTIF(2,2)=-(ALPH/(A2ST3-F1**2)+BETA/(A2ST3-F2**2))*0.5 
C 
      CALL GRUPA(X3,X4,X1,X2,Y3,Y4,Y1,Y2,S1,S2,S3,S4, 
     -           T1,T2,T3,T4,F1,F2) 
      ALPH=CONDT*(A2*(S1+S2)+F1*(S3+S4)) 
      BETA=CONDT*(A2*(T1+T2)+F2*(T3+T4)) 
      ASTIF(3,3)=-(ALPH/(A2ST3-F1**2)+BETA/(A2ST3-F2**2))*0.5 
C 
      CALL GRUPA(X4,X1,X2,X3,Y4,Y1,Y2,Y3,S1,S2,S3,S4, 
     -           T1,T2,T3,T4,F1,F2) 
      ALPH=CONDT*(A2*(S1+S2)+F1*(S3+S4)) 
      BETA=CONDT*(A2*(T1+T2)+F2*(T3+T4)) 
      ASTIF(4,4)=-(ALPH/(A2ST3-F1**2)+BETA/(A2ST3-F2**2))*0.5 
C 
      CALL GRUPC(X1,X2,X3,X4,Y1,Y2,Y3,Y4,S1,S2,S3,S4, 
     -           T1,T2,T3,T4,F1,F2) 
      ALPH=CONDT*(A2*(S1+S2)+F1*(S3+S4)) 
      BETA=CONDT*(A2*(T1+T2)+F2*(T3+T4)) 
      ASTIF(1,2)=-(ALPH/(A2ST3-F1**2)+BETA/(A2ST3-F2**2))*0.5 
C 
      CALL GRUPC(X2,X3,X4,X1,Y2,Y3,Y4,Y1,S1,S2,S3,S4, 
     -           T1,T2,T3,T4,F1,F2) 
      ALPH=CONDT*(A2*(S1+S2)+F1*(S3+S4)) 
      BETA=CONDT*(A2*(T1+T2)+F2*(T3+T4)) 
      ASTIF(2,3)=-(ALPH/(A2ST3-F1**2)+BETA/(A2ST3-F2**2))*0.5 
C 
      CALL GRUPC(X3,X4,X1,X2,Y3,Y4,Y1,Y2,S1,S2,S3,S4, 
     -           T1,T2,T3,T4,F1,F2) 
      ALPH=CONDT*(A2*(S1+S2)+F1*(S3+S4)) 
      BETA=CONDT*(A2*(T1+T2)+F2*(T3+T4)) 
      ASTIF(3,4)=-(ALPH/(A2ST3-F1**2)+BETA/(A2ST3-F2**2))*0.5 
C 
      CALL GRUPC(X4,X1,X2,X3,Y4,Y1,Y2,Y3,S1,S2,S3,S4, 
     -           T1,T2,T3,T4,F1,F2) 
      ALPH=CONDT*(A2*(S1+S2)+F1*(S3+S4)) 
      BETA=CONDT*(A2*(T1+T2)+F2*(T3+T4)) 
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      ASTIF(1,4)=-(ALPH/(A2ST3-F1**2)+BETA/(A2ST3-F2**2))*0.5 
C 
      CALL GRUPE(X1,X2,X3,X4,Y1,Y2,Y3,Y4,S1,S2,S3,S4, 
     -           T1,T2,T3,T4,F1,F2) 
      ALPH=CONDT*(A2*(S1+S2)+F1*(S3+S4)) 
      BETA=CONDT*(A2*(T1+T2)+F2*(T3+T4)) 
      ASTIF(1,3)=-(ALPH/(A2ST3-F1**2)+BETA/(A2ST3-F2**2))*0.5 
C 
      CALL GRUPE(X2,X3,X4,X1,Y2,Y3,Y4,Y1,S1,S2,S3,S4, 
     -           T1,T2,T3,T4,F1,F2) 
      ALPH=CONDT*(A2*(S1+S2)+F1*(S3+S4)) 
      BETA=CONDT*(A2*(T1+T2)+F2*(T3+T4)) 
      ASTIF(2,4)=-(ALPH/(A2ST3-F1**2)+BETA/(A2ST3-F2**2))*0.5 
C 
      RETURN 
      END 
      SUBROUTINE GRUPA(X1,X2,X3,X4,Y1,Y2,Y3,Y4,S1, 
     -                 S2,S3,S4,T1,T2,T3,T4,F1,F2) 
      IMPLICIT REAL(A-H,O-Z) 
      REAL X1,X2,X3,X4,Y1,Y2,Y3,Y4 
      REAL S1,S2,S3,S4,T1,T2,T3,T4,F1,F2 
      S1=2.0*(Y4-Y2)**2 
      S2=2.0*(X4-X2)**2 
      S3=-S1/2.0 
      S4=-S2/2.0 
      T1=(Y2-Y3)**2+(Y3-Y4)**2+(Y4-Y2)**2 
      T2=(X2-X3)**2+(X3-X4)**2+(X4-X2)**2 
      T3=(Y4-Y3)**2-(Y3-Y2)**2 
      T4=(X4-X3)**2-(X3-X2)**2 
      CALL F1F2(X1,X2,X3,X4,Y1,Y2,Y3,Y4,F1,F2) 
      RETURN 
      END 
C 
      SUBROUTINE GRUPC(X1,X2,X3,X4,Y1,Y2,Y3,Y4,S1, 
     -                 S2,S3,S4,T1,T2,T3,T4,F1,F2) 
      IMPLICIT REAL(A-H,O-Z)                    
      REAL X1,X2,X3,X4,Y1,Y2,Y3,Y4 
      REAL S1,S2,S3,S4,T1,T2,T3,T4,F1,F2 
      S1=(Y4-Y2)*(2.0*Y1-Y3-Y4) 
      S2=(X4-X2)*(2.0*X1-X3-X4) 
      S3=(Y4-Y2)*(Y4-Y1) 
      S4=(X4-X2)*(X4-X1) 
      T1=(Y3-Y1)*(2.0*Y2-Y3-Y4) 
      T2=(X3-X1)*(2.0*X2-X3-X4) 
      T3=(Y3-Y1)*(Y3-Y2) 
      T4=(X3-X1)*(X3-X2) 
      CALL F1F2(X1,X2,X3,X4,Y1,Y2,Y3,Y4,F1,F2) 
      RETURN 
      END 
C 
      SUBROUTINE GRUPE(X1,X2,X3,X4,Y1,Y2,Y3,Y4,S1, 
     -                 S2,S3,S4,T1,T2,T3,T4,F1,F2) 
      IMPLICIT REAL(A-H,O-Z) 
      REAL X1,X2,X3,X4,Y1,Y2,Y3,Y4 
      REAL S1,S2,S3,S4,T1,T2,T3,T4,F1,F2 
      S1=-(Y4-Y2)**2 
      S2=-(X4-X2)**2 
      S3=0.0 
      S4=0.0 
      T1=(Y3+Y1)*(Y4+Y2)-2.0*(Y4-Y2)**2-2.0*(Y1*Y3+Y2*Y4) 
      T2=(X3+X1)*(X4+X2)-2.0*(X4-X2)**2-2.0*(X1*X3+X2*X4) 
      T3=(Y4-Y2)*(Y1-Y2+Y3-Y4) 
      T4=(X4-X2)*(X1-X2+X3-X4) 
      CALL F1F2(X1,X2,X3,X4,Y1,Y2,Y3,Y4,F1,F2) 
      RETURN 
      END 
C 
      SUBROUTINE F1F2(X1,X2,X3,X4,Y1,Y2,Y3,Y4,F1,F2) 
      IMPLICIT REAL(A-H,O-Z) 
      REAL X1,X2,X3,X4,Y1,Y2,Y3,Y4 
      REAL F1,F2 
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      F1=(X1+X3)*(Y4-Y2)-(Y1+Y3)*(X4-X2)-2.0*(X2*Y4-X4*Y2) 
      F2=(Y2+Y4)*(X3-X1)-(X2+X4)*(Y3-Y1)-2.0*(X3*Y1-X1*Y3) 
      RETURN 
      END 
C 
      SUBROUTINE SMASS4(AMASS,XCORD,YCORD,DENST,CAPCT) 
C     ------------------------------------------------ 
C                                                                       SMASS4 
C     This subroutine generates the analytical capacitance matrix       SMASS4 
C     for a four node quadrilateral                                     SMASS4 
C                                                                       SMASS4 
      IMPLICIT REAL(A-H,O-Z) 
      REAL AMASS(4,4),XCORD(4),YCORD(4) 
      REAL   X1,X2,X3,X4,Y1,Y2,Y3,Y4 
      INTEGER I,J 
C 
      X1=XCORD(1) 
      X2=XCORD(2) 
      X3=XCORD(3) 
      X4=XCORD(4) 
      Y1=YCORD(1) 
      Y2=YCORD(2) 
      Y3=YCORD(3) 
      Y4=YCORD(4) 
C 
      AMASS(1,1)=X1*(Y2-Y4)/12        + X2*(Y3-3*Y1+2*Y4)/36 
     -          +X3*(Y4-Y2)/36        + X4*(3*Y1-2*Y2-Y3)/36 
      AMASS(1,2)=X1*(3*Y2-Y3-2*Y4)/72 + X2*(2*Y3-3*Y1+Y4)/72 
     -          +X3*(Y1-2*Y2+Y4)/72   + X4*(2*Y1-Y2-Y3)/72 
      AMASS(1,3)=X1*(Y2-Y4)/72        + X2*(Y3-Y1)/72 
     -          +X3*(Y4-Y2)/72        + X4*(Y1-Y3)/72 
      AMASS(1,4)=X1*(2*Y2+Y3-3*Y4)/72 + X2*(Y3-2*Y1+Y4)/72 
     -          +X3*(2*Y4-Y1-Y2)/72   + X4*(3*Y1-Y2-2*Y3)/72 
      AMASS(2,2)=X1*(3*Y2-2*Y3-Y4)/36 + X2*(Y3-Y1)/12 
     -          +X3*(2*Y1+Y4-3*Y2)/36 + X4*(Y1-Y3)/36 
      AMASS(2,3)=X1*(2*Y2-Y3-Y4)/72   + X2*(3*Y3-2*Y1-Y4)/72 
     -          +X3*(2*Y4+Y1-3*Y2)/72 + X4*(Y1+Y2-2*Y3)/72 
      AMASS(2,4)=X1*(Y2-Y4)/72        + X2*(Y3-Y1)/72 
     -          +X3*(Y4-Y2)/72        + X4*(Y1-Y3)/72 
      AMASS(3,3)=X1*(Y2-Y4)/36        + X2*(3*Y3-Y1-2*Y4)/36 
     -          +X3*(Y4-Y2)/12        + X4*(Y1+2*Y2-3*Y3)/36 
      AMASS(3,4)=X1*(Y2+Y3-2*Y4)/72   + X2*(2*Y3-Y1-Y4)/72 
     -          +X3*(3*Y4-Y1-2*Y2)/72 + X4*(2*Y1+Y2-3*Y3)/72 
      AMASS(4,4)=X1*(Y2+2*Y3-3*Y4)/36 + X2*(Y3-Y1)/36 
     -          +X3*(3*Y4-2*Y1-Y2)/36 + X4*(Y1-Y3)/12 
      DO I=1,4 
      DO J=I,4 
      AMASS(I,J)=DENST*CAPCT*AMASS(I,J) 
      END DO 
      END DO 
      RETURN 
C 
      END 
 
      SUBROUTINE PROFAC (MPROF,MJNT,N,A,ND) 
C     -------------------------------------- 
C                                                                       PROFAC 
C     This subroutine factorizes the global stiff matrix                PROFAC 
C                                                                       PROFAC 
C 
      IMPLICIT REAL(A-H,O-Z) 
      REAL A(MPROF) 
      INTEGER N,ND(MJNT) 
      IF (A(1).GT.0.0) GOTO 78 
   79 WRITE(*,*) 'GSTIF IS NOT POSITIVE DEFINITE!' 
      STOP 2222 
   78 CONTINUE 
      DO 77 J=2,N 
       J1=J-1 
       NJ=ND(J1) 
       JJ=ND(J) 
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       NCJ=JJ-NJ 
       IF (NCJ.EQ.1) GOTO 77 
       IF (J1.EQ.1) GOTO 75 
       DO 74 I=2,J1 
        JMI=J-I 
        IF (NCJ.LE.(JMI+1)) GOTO 74 
        I1=I-1 
        NI=ND(I1) 
        NJ=ND(J1) 
        II=ND(I) 
        IJ=JJ-JMI 
        NCI=II-NI 
        NCJI=NCJ-JMI 
        NCD=NCJI-NCI 
        IF (NCD.LT.0) GOTO 71 
        K1=NCI-1 
        NJ=NJ+NCD 
        GOTO 72 
   71   K1=NCJI-1 
        NI=NI-NCD 
   72   SUM=A(IJ) 
        IF (K1.EQ.0) GOTO 74 
        DO 73 K=1,K1 
         KI=NI+K 
         KJ=NJ+K 
         SUM=SUM-A(KI)*A(KJ) 
   73   CONTINUE 
        A(IJ)=SUM 
   74  CONTINUE 
   75  SUM=A(JJ) 
       NCJ1=NCJ-1 
       DO 76 K=1,NCJ1 
        KJ=ND(J1)+K 
        KK=ND(J-NCJ+K) 
        TEMP=A(KJ)/A(KK) 
        SUM=SUM-TEMP*A(KJ) 
        A(KJ)=TEMP 
   76  CONTINUE 
       IF (SUM.LE.0.0) GOTO 79 
       A(JJ)=SUM 
   77 CONTINUE 
      RETURN 
      END 
 
      SUBROUTINE PROSOL (MPROF,MJNT,N,U,B,X,ND) 
C     ----------------------------------------- 
C                                                                       PROSOL 
C     This subroutine solves the final system                           PROSOL 
C                                                                       PROSOL 
C 
      IMPLICIT REAL(A-H,O-Z) 
      REAL U(MPROF),B(MJNT),X(MJNT) 
      INTEGER N,ND(MJNT) 
      DO 82 I=1,N 
      SUM=B(I) 
      IF (I.EQ.1) GOTO 86 
      I1=I-1 
      NI=ND(I1) 
      II=ND(I) 
      NCI=II-NI 
      K1=NCI-1 
      KR=I-NCI 
      IF (K1.EQ.0) GOTO 86 
      DO 81 K=1,K1 
      KI=NI+K 
      KR=KR+1 
      SUM=SUM-U(KI)*X(KR) 
   81 CONTINUE 
   86 X(I)=SUM 
   82 CONTINUE 
      DO 83 I=1,N 
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      II=ND(I) 
      X(I)=X(I)/U(II) 
   83 CONTINUE 
      DO 85 I1=1,N 
      I=N-I1+1 
      K2=I+1 
      SUM=X(I) 
      IF (I.EQ.N) GOTO 87 
      DO 84 K=K2,N 
      K1=K-1 
      KMI=K-I 
      NK=ND(K1) 
      NCK=ND(K)-NK 
      NCKI=NCK-KMI 
      IF (NCKI.LE.0) GOTO 84 
      IK=NK+NCKI 
      SUM=SUM-U(IK)*X(K) 
   84 CONTINUE 
   87 X(I)=SUM 
   85 CONTINUE 
      RETURN 
      END 
 
      SUBROUTINE L2NORM (MJNT,NPOIN,TNORM,TEMPR) 
C     ------------------------------------------ 
C                                                                       L2NORM 
C     This subroutine calculates the L2 norm for a given vector         L2NORM 
C                                                                       L2NORM 
C 
      IMPLICIT REAL(A-H,O-Z) 
      REAL TEMPR(MJNT) 
      TMAXM=0.0 
      TSUM2=0.0 
      DO 98 I=1,NPOIN 
      IF (TMAXM.LT.ABS(TEMPR(I))) TMAXM=ABS(TEMPR(I)) 
      TSUM2=TSUM2+TEMPR(I)**2.0 
   98 CONTINUE 
      IF (TMAXM.EQ.0.0) TMAXM=1.0 
      TNORM=SQRT((TSUM2/TMAXM**2.0)/NPOIN) 
      RETURN 
      END 
 
      SUBROUTINE TRANSI (MELM,MJNT,MPROF,TOLER,ITRAN,NITER, 
     -                   NELEM,NPOIN,NNPEL,NPROF,NDFEL,NCONC, 
     -                   NDIAG,IFFIX,TFIXD,ASTIF,AMASS,GSTIF, 
     -                   EFORC,FORCE,TLAST,TEMPR,COORD,DTIME, 
     -                   ALPHA,TEMP1,RVECT,MTYP,MTYPE,DEN,DIFS) 
C     --------------------------------------------------------- 
C                                                                       TRANSI 
C     This subroutine performs transient analysis                       TRANSI 
C                                                                       TRANSI 
      IMPLICIT REAL(A-H,O-Z) 
      REAL ASTIF(4,4),GSTIF(MPROF),AMASS(4,4) 
      REAL EFORC(4),XCORD(4),YCORD(4),FORCE(MJNT),TLAST(MJNT) 
      REAL TEMPR(MJNT),COORD(MJNT,2),TFIXD(MJNT),TEMP1(4,4),RVECT(4) 
      REAL DEN(MTYP),DIFS(MTYP),TOLER,DTIME,ALPHA 
      INTEGER ITRAN,NITER,NELEM,NPOIN,NNPEL(MELM),NPROF,MTYPE(MELM) 
      INTEGER NDFEL(4),NCONC(MELM,4),NDIAG(MJNT),IFFIX(MJNT) 
C 
C ***  PERFORM  TRANSIENT  ANALYSIS 
C 
      DO 135 I=1,NPOIN 
      TLAST(I)=TEMPR(I) 
  135 CONTINUE 
      DO 136 ITER=1,NITER 
         DO 137 I=1,NPOIN 
         FORCE(I)=0.0 
  137    CONTINUE 
         DO 138 I=1,NPROF 
         GSTIF(I)=0.0 
  138    CONTINUE 
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         DO 139 IELEM=1,NELEM 
           IMATR=MTYPE(IELEM) 
           CALL PROPTY(IELEM,MELM,MJNT,NNPEL,TEMPR,DEN,DIFS,MTYP, 
     -               NCONC,DENST,CONDT,DIFST,CAPCT,IMATR) 
            DO 140 I=1,NNPEL(IELEM) 
               NDFEL(I)=NCONC(IELEM,I) 
               ID=NDFEL(I) 
               EFORC(I)=0.0 
               XCORD(I)=COORD(ID,1) 
               YCORD(I)=COORD(ID,2) 
               DO 141 J=1,NNPEL(IELEM) 
                  AMASS(I,J)=0.0 
                  ASTIF(I,J)=0.0 
  141          CONTINUE 
  140       CONTINUE 
C 
C *** CONSTRUCT ELEMENT STIFFNESS AND MASS MATRICES 
C 
      CALL STIFFN (MELM,IELEM,NNPEL,ITRAN,DENST,CONDT, 
     -             CAPCT,ASTIF,AMASS,XCORD,YCORD) 
C 
C *** CALCULATE NEUMANN BOUNDARY CONDITION EFFECTS HERE 
C *** ADD (ELEMENT'S) INTERNAL VOLUMETRIC HEAT RESOURCE TO THE FORCE VECTOR 
C *** TRANSFER ELEMENT FORCES TO GLOBAL FORCE VECTOR 
C 
      DO 142 J=1,NNPEL(IELEM) 
      NOD=NDFEL(J) 
      FORCE(NOD)=FORCE(NOD)+EFORC(J) 
  142 CONTINUE 
C 
C *** CALCULATE ELEMENT CONTRIBUTION TO FORCE VECTOR (RHS) 
C 
      DO 116 I=1,NNPEL(IELEM) 
      RVECT(I)=0.0 
      DO 111 J=1,NNPEL(IELEM) 
      TEMP1(I,J)=AMASS(I,J)/DTIME-ASTIF(I,J)*(1.0-ALPHA) 
  111 CONTINUE 
  116 CONTINUE 
      DO 114 I=1,NNPEL(IELEM) 
      DO 115 J=1,NNPEL(IELEM) 
      RVECT(I)=RVECT(I)+TEMP1(I,J)*TLAST(NDFEL(J)) 
  115 CONTINUE 
  114 CONTINUE 
C 
C *** ASSEMBLE ELEMENT RHS VECTOR INTO GLOBAL FORCE VECTOR 
C 
      DO 143 I=1,NNPEL(IELEM) 
      NOD=NDFEL(I) 
      FORCE(NOD)=FORCE(NOD)+RVECT(I) 
  143 CONTINUE 
C 
C *** CALCULATE ELEMENT CONTRIBUTION TO SYSTEM MATRIX (LHS) 
C 
      DO 91 I=1,NNPEL(IELEM) 
      DO 105 J=1,NNPEL(IELEM) 
      TEMP1(I,J)=AMASS(I,J)/DTIME+ASTIF(I,J)*ALPHA 
  105 CONTINUE 
   91 CONTINUE 
C 
C *** ASSEMBLE INTO GLOBAL MATRIX IN VECTOR FORM 
C 
      DO 144 J=1,NNPEL(IELEM) 
      DO 145 K=J,NNPEL(IELEM) 
      IROW=NDFEL(J) 
      IF (IFFIX(IROW).EQ.1) GOTO 109 
      ICOL=NDFEL(K) 
      IF (IFFIX(ICOL).EQ.1) GOTO 109 
      IF (IROW.LE.ICOL) GOTO 110 
      ITEM=IROW 
      IROW=ICOL 
      ICOL=ITEM 
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  110 IRC=NDIAG(ICOL)-ICOL+IROW 
      GSTIF(IRC)=GSTIF(IRC)+TEMP1(J,K) 
  109 CONTINUE 
  145 CONTINUE 
  144 CONTINUE 
C 
C *** MODIFY LOADS TO ACCOUNT FOR FIXED TEMPERATURE NODES 
C 
      DO 146 J=1,NNPEL(IELEM) 
      IROW=NDFEL(J) 
      IF (IFFIX(IROW).EQ.1) GOTO 108 
      DO 147 K=1,NNPEL(IELEM) 
      ICOL=NDFEL(K) 
      IF (IFFIX(ICOL).EQ.1) THEN 
      FORCE(IROW)=FORCE(IROW)-TEMP1(J,K)*TFIXD(ICOL) 
      ENDIF 
  147 CONTINUE 
  108 CONTINUE 
  146 CONTINUE 
  139 CONTINUE 
C 
C *** SOLVE THE FINAL SYSTEM USING PROFILE SOLVER 
C 
C 1.  SET DIAGONAL ELEMENTS OF GSTIF CORRESPONDING TO FIXED TEMPERATURE 
C     NODES EQUAL TO UNITY AND THE FORCE VECTOR TO THE FIXED VALUE 
C 
      DO 148 I=1,NPOIN 
      IF (IFFIX(I).EQ.1) THEN 
      J=NDIAG(I) 
      GSTIF(J)=1.0 
      FORCE(I)=TFIXD(I) 
      TEMPR(I)=TFIXD(I) 
      ENDIF 
  148 CONTINUE 
C 
C 2.  SOLVE THE FINAL SYSTEM USING PROFILE SOLVER 
C 
      CALL PROFAC (MPROF,MJNT,NPOIN,GSTIF,NDIAG) 
      CALL PROSOL (MPROF,MJNT,NPOIN,GSTIF,FORCE,TEMPR,NDIAG) 
C 
C *** CHECK FOR CONVERGENCE OF ITERATION 
C 
      IF (ITER.EQ.1) THEN 
       CALL L2NORM (MJNT,NPOIN,TNRM1,TEMPR) 
      ELSE 
       CALL L2NORM (MJNT,NPOIN,TNRM2,TEMPR) 
       CONVG=ABS(TNRM2-TNRM1)/TNRM2 
       IF (CONVG.LE.TOLER) GOTO 250 
       TNRM1=TNRM2 
      ENDIF 
  136 CONTINUE 
      WRITE (*,251) 
      STOP 3333 
  250 CONTINUE 
  251 FORMAT (//' ','HEAT FLOW SOLUTION HAS FAILED TO CONVERGE') 
      RETURN 
      END 
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AAppppeennddiixx  DD      VV22TTRREEDD  SSoouurrccee  CCooddee  
 
      SUBROUTINE TRED(ME,TEMPL,TREF,NAGG) 
C     *********************************** 
C 
C     This subroutine calculates temperature-related reduction 
C     coefficients for various concrete and steel material properties.      
C 
      PARAMETER (MELM=5000) 
 
      COMMON /REDUCTION/ TRC,TRS 
 
      REAL TRC(MELM,4),TRS(MELM,4) 
      REAL TEMPL,TREF,TA 
      REAL KC1,KC2,KC3,KC4 
      REAL KS1,KS2,KS3,KS4 
      INTEGER ME,NAGG 
      REAL TIER(13),VALUEC11(13),VALUEC12(13),VALUEC3(13), 
     -     VALUES1(13),VALUES2(13),VALUES3(13) 
      REAL INTPLAT,BASE,BASE1,BASE2 
C 
C     Note: NAGG=1 for carbonate aggregates 
C           NAGG=2 for silicious aggregates 
C 
      TA=TEMPL+TREF 
      DATA TIER/20,100,200,300,400,500,600, 
     -           700,800,900,1000,1100,1200/ 
C 
C     Concrete Compressive Strength 
C 
      DATA VALUEC11/1.0,1.0,0.97,0.91,0.85,0.74,0.60, 
     -            0.43,0.27,0.15,0.06,0.02,0.0/ 
      DATA VALUEC12/1.0,1.0,0.95,0.85,0.75,0.60,0.45, 
     -            0.3,0.15,0.08,0.04,0.01,0.0/ 
      IF (NAGG.EQ.1) THEN 
        KC1=INTPLAT(TA,TIER,VALUEC11) 
      ELSE 
        KC1=INTPLAT(TA,TIER,VALUEC12) 
      ENDIF 
      IF (KC1.LT.1.E-6) KC1=1.E-6 
C 
C     Concrete Tensile Strength 
C 
      IF (TA.LE.100) KC2=1.0 
      IF (TA.GT.100) KC2=1.0-(TA-100)/500. 
C     NO TENSILE STRENGTH WHEN TEMP. ABOVE 500 
      IF (KC2.LT.1.E-6) KC2=1.E-6 
C 
C     Concrete's Strain(ec') at which Stress reaches fc' 
C 
      DATA VALUEC3/.0025,.0040,.0055,.0070,.010,.015,.025, 
     -            .025,.025,.025,.025,.025,1.E6/ 
      IF (NAGG.EQ.1) THEN 
        IF (TA.LE.20) THEN 
         BASE=0.0 
        ELSEIF (TA.LE.805) THEN 
         BASE=-1.2E-4+6.E-6*TA+1.4E-11*TA*TA*TA 
        ELSE 
         BASE=12E-3 
        END IF 
        BASE=INTPLAT(TA,TIER,VALUEC3)-BASE 
        KC3=BASE/VALUEC3(1) 
C        IF THERMAL STAIN NOT TO BE DEDUCTED THEN: 
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C        KC3=INTPLAT(TA,TIER,VALUEC3)/VALUEC3(1) 
      ELSE 
        IF (TA.LE.20) THEN 
         BASE=0.0 
        ELSEIF (TA.LE.700) THEN 
         BASE=-1.8E-4+9.E-6*TA+2.3E-11*TA*TA*TA 
        ELSE 
         BASE=14E-3 
        END IF 
        BASE=INTPLAT(TA,TIER,VALUEC3)-BASE 
        KC3=BASE/VALUEC3(1) 
C        IF THERMAL STAIN NOT TO BE DEDUCTED THEN: 
C        KC3=INTPLAT(TA,TIER,VALUEC3)/VALUEC3(1) 
      ENDIF 
      IF (KC3.LT.1.E-6) KC3=1.E-6 
C 
C     Concrete Coefficient of Thermal Expansion 
C     NOTE: FACTORS GIVEN HERE MAKE WORKS THE FORMULA 
C           e(T)=Delta_T(T)*Alpha(T) 
C               =(T-20)*Alpha(20)*KS4, 
C           WHICH ORIGINALLY SUITS CONSTANT Alpha ONLY 
c 
C     BASE1:Alpha at 20'C for carbonate Aggregates 
C     BASE2:Alpha at 20'C for Silicious Aggregates 
C     BASE:Thermal Strain at TA'C 
C 
      BASE1=6.E-6+4.2E-11*20*20 
      BASE2=9.E-6+6.9E-11*20*20 
      IF (NAGG.EQ.1) THEN 
       IF (TA.LE.20) THEN 
        KC4=1.0 
       ELSEIF (TA.LE.805) THEN 
        BASE=-1.2E-4+6.E-6*TA+1.4E-11*TA*TA*TA 
        KC4=BASE/(TA-20)/BASE1 
       ELSE 
        BASE=12E-3 
        KC4=BASE/(TA-20)/BASE1 
       END IF 
      ELSE 
       IF (TA.LE.20) THEN 
        KC4=1.0 
       ELSEIF (TA.LE.700) THEN 
        BASE=-1.8E-4+9.E-6*TA+2.3E-11*TA*TA*TA 
        KC4=BASE/(TA-20)/BASE2 
       ELSE 
        BASE=14E-3 
        KC4=BASE/(TA-20)/BASE2 
       END IF 
      ENDIF 
C 
C     Reinforcement Yield Stress    
C 
      DATA VALUES1/1.0,1.0,1.0,1.0,1.0,0.78,0.47, 
     -            0.23,0.11,0.06,0.04,0.02,0.0/ 
      KS1=INTPLAT(TA,TIER,VALUES1) 
      IF (KS1.LT.1.E-6) KS1=1.E-6 
C 
C     Reinforcement Ultimate Strength 
C 
      DATA VALUES2/1.0,1.0,0.81,0.61,0.42,0.36,0.18, 
     -            0.07,0.05,0.04,0.02,0.01,0.0/ 
      KS2=INTPLAT(TA,TIER,VALUES2) 
      IF (KS2.LT.1.E-6) KS2=1.E-6 
C 
C     Reinforcement Modulus of Elasticity 
C 
      DATA VALUES3/1.0,1.0,0.90,0.80,0.70,0.60,0.31, 
     -            0.13,0.09,0.07,0.04,0.02,0.0/ 
      KS3=INTPLAT(TA,TIER,VALUES3) 
      IF (KS3.LT.1.E-6) KS3=1.E-6 
C 



Appendix D V2TRED Source Code 

 144 

C     Reinforcement Coefficient of Thermal Expansion (Alpha) 
C     NOTE: FACTORS GIVEN HERE MAKE WORKS THE FORMULA 
C           e(T)=Delta_T(T)*Alpha(T) 
C               =(T-20)*Alpha(20)*KS4 
C           WHICH ORIGINALLY SUITS CONSTANT Alpha ONLY 
C     BASE1:Alpha at 20'C 
C     BASE:Thermal Strain at TA'C 
C 
      BASE1=1.2E-5+0.8E-8*20 
      IF (TA.LE.20) THEN 
        KS4=1.0 
      ELSEIF (TA.LE.750) THEN 
        BASE=-2.146E-4+1.2E-5*TA+0.4E-8*TA*TA 
        KS4=BASE/(TA-20)/BASE1 
      ELSEIF (TA.LE.860) THEN 
        BASE=11.E-3 
        KS4=BASE/(TA-20)/BASE1 
      ELSE 
        BASE=-6.2E-3+2.E-5*TA 
        KS4=BASE/(TA-20)/BASE1 
      END IF 
C 
      TRC(ME,1)=KC1       
      TRC(ME,2)=KC2       
      TRC(ME,3)=KC3       
      TRC(ME,4)=KC4       
      TRS(ME,1)=KS1       
      TRS(ME,2)=KS2       
      TRS(ME,3)=KS3       
      TRS(ME,4)=KS4       
C 
      RETURN 
      END 
 
C     THIS FUNCTION WORKS EVEN WHEN TIER'S NO LESS THAN 13 
      REAL FUNCTION INTPLAT(TEM,TIER,VALUE) 
      REAL TEM,TIER(13),VALUE(13) 
      INTEGER INDEX 
      REAL DIF 
      DO 1 INDEX=1,13 
        IF (TEM.LE.TIER(1)) THEN 
           INTPLAT=VALUE(1) 
           RETURN 
        END IF 
        IF (TEM.LE.TIER(INDEX)) THEN 
         DIF=(VALUE(INDEX-1)-VALUE(INDEX))/(TIER(INDEX)-TIER(INDEX-1)) 
         INTPLAT=VALUE(INDEX-1)-DIF*(TEM-TIER(INDEX-1)) 
         RETURN 
        END IF 
        IF (TEM.GE.TIER(13)) THEN 
           INTPLAT=VALUE(13) 
           RETURN 
        END IF 
  1   CONTINUE 
      END 
 


