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Abstract: A procedure for nonlinear analysis of RC slabs and shell structures is presented. Cracked RC is treated as an orthotropic material
governed by a smeared rotating crack procedure and the constitutive formulations of the disturbed stress field model. The analysis procedure
is implemented within the framework of a finite-element program employing layered thick-shell elements that consider out-of-plane (through-
thickness) shear deformations. A simple modification method employing an effective shear strain concept is introduced to improve the
out-of-plane performance of the layered shell element for RC applications. The adequacy of the procedure is verified using test data of
RC members controlled by out-of-plane shear failure mechanisms and elements under combined in-plane and out-of-plane loading scenarios.
The nonlinear finite-element program is shown to be suitable for elements exhibiting ductile or brittle responses, and the shear modification
method introduced is found to be capable of capturing out-of-plane shear failures. DOI: 10.1061/(ASCE)ST.1943-541X.0001311. © 2015
American Society of Civil Engineers.
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Introduction

RC shells are employed frequently in the design of modern
concrete infrastructure because their outstanding load-carrying
capabilities make them ideal candidates for demanding structural
applications. Today, computer-based analytical procedures are
commonly used in the design of RC structures. In the specific case
of RC shells that are often characterized by curvilinear geometries
and are subjected to complex loading conditions, the use of com-
putational modeling procedures is particularly appealing because
they can provide a practical approach toward the design and assess-
ment of such structures.

The introduction of multilayered shell analysis procedures
represents a significant advancement toward the current state of
the art in RC shell modeling. By subdividing a shell element into
a series of layers, each with uniform in-plane stress and strain con-
ditions, stiffness variations through the thickness are represented
discretely. Compatibility assumptions used to describe the in-plane
strain variation through the thickness, e.g., plane sections remain
plane, provide a computational procedure similar to that employed
for two-dimensional membranes that is capable of analyzing ele-
ments under coexisting bending moments and in-plane membrane
forces. Hand et al. (1973) and Lin and Scordelis (1975) reported
early applications of layered shell elements for RC applications. In
the late 1970s, Schnobrich (1977) provided a general review of
RC finite-element modeling techniques that were available at that
time. It was suggested that for plate and shell structures dominated
by combined flexure and membrane forces, the types of elements

employed by Hand et al. (1973) and Lin and Scordelis (1975)
were the most suitable of those available. However, Schnobrich
noted that if out-of-plane shear was relevant, alternative three-
dimensional models should be employed.

In the design of RC shell structures subjected to combined
bending moments, membrane forces, and out-of-plane shear forces,
shell-type analysis procedures are commonly used to evaluate the
structure response under coexisting membrane forces and bending
moments, and supplemental analyses are used to investigate out-of-
plane shear resistance. The validity of this approach is somewhat
unfounded because most of the supplemental procedures used to
compute out-of-plane shear strength are empirical and were devel-
oped for much simpler beam-type RC elements (Adebar 1989;
Collins and Mitchell 1997). Thus, significant research efforts have
been focused toward the development of RC shell analysis proce-
dures that can adequately consider conditions of combined mem-
brane forces, bending moments, and out-of-plane shear forces.

Owen and Figueiras (1984) were among the early investigators
to report RC shell finite-element analysis procedures that consid-
ered out-of-plane shear forces. The authors employed a layered
thick-shell finite element developed on the basis of the Mindlin
theory (Mindlin 1951), inherently assuming that out-of-plane shear
strains are constant through the thickness of the element. Polak
and Vecchio (1993) later modified the thick-shell finite-element
program developed by Owen and Figueiras (1984), such that the
behavior of cracked RC was modeled in accordance with the for-
mulations of the modified compression field theory (Vecchio and
Collins 1986). Similar thick-shell finite-element procedures devel-
oped on the basis of the Mindlin theory that employed different
RC behavioral models have also been reported (Song et al. 2002;
Maekawa et al. 2003).

Others have developed layered sectional analysis tools that can
be used to investigate the behavior of a single RC shell element
under user-defined loading. Examples can be found in the work
of Kirschner and Collins (1986), Adebar and Collins (1991), and
Bentz (2000). In comparison to finite-element procedures, sectional
analysis tools are generally less restrictive in their development
and, as a result, often employ rigorous solution methods to model
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out-of-plane shear behavior. However, their application is limited
by the requirement of the user to predetermine critical structural
elements and specify appropriate loading conditions.

The nonlinear analysis procedure presented in this paper is
developed on the basis of the thick-shell finite-element program
reported by Owen and Figueiras (1984) and subsequent work pre-
sented by Polak and Vecchio (1993). The introduction of a simple
modification procedure is used to improve the performance of the
Mindlin-type finite elements for the analysis of RC under out-of-
plane shear loading conditions. Combined with the formulations of
the disturbed stress field model to represent the behavior of cracked
RC, the modified solution algorithm is found to accurately capture
the response of RC slabs and shell structures under combined in-
plane and out-of-plane loading scenarios and, in contrast to much
of the related work presented in the literature, the procedure is veri-
fied using experimental data in which out-of-plane shear failure
mechanisms govern. The resulting finite-element program can be
used to efficiently model RC subassemblies or, in some cases, full
RC shell structures while still adequately capturing RC material
response and failure mechanisms.

Finite-Element Overview

The presented nonlinear analysis procedure is implemented within
the framework of an isoparametric thick-shell finite-element analy-
sis program. Detailed presentation of the finite-element formulation
is available elsewhere (Figueiras and Owen 1984); however, the
following section provides an overview of several key attributes of
the shell element.

The quadratic heterosis shell element employed is developed
using a combination of serendipity shape functions for translational
degrees of freedom (DOFs) and Lagrangian shape functions for
rotational DOFs. This approach, combined with a selective numeri-
cal integration scheme to avoid shear locking phenomena, results in
an element that permits curved geometries and variable thicknesses,
exhibits good performance in thick- and thin-shell applications,
and avoids the development of spurious zero-energy modes arising
from reduced integration procedures. A total of 42 DOFs are con-
sidered in the nine-noded shell. The eight nodes forming the edges
of the element each have five DOFs (three translations and two
rotations) and the ninth node located at the center of the element
has two rotational DOFs.

Relevant to the work comprising this study, out-of-plane shear
deformations are developed by way of a thick-shell formulation in
accordance with Mindlin theory (Mindlin 1951). Mindlin-type
finite elements are formulated on the basis of the assumptions that
(1) plane sections before deformation remain plane after defor-
mation, but not necessarily normal to the element midsurface, and
(2) stresses normal to the midsurface, i.e., out-of-plane stresses, are
negligible. Fig. 1 illustrates the element deformation assumptions
and shows how the sectional rotation is assumed to be composed
of two parts: bending deformations, δw=δx, and shear deforma-
tions, ϕx. For the section to remain planar under combined bending
and shear, the out-of-plane shear strains are assumed to be constant
through the thickness. The second assumption implies that defor-
mations normal to the surface of the element are not considered in
the element displacement field. The strain set that is computed from
the nodal displacements (relative to the local x, y, z-system) for a
given point within the element is

fεg ¼ h εx εy γxy γxz γyz i ð1Þ

The out-of-plane normal strain, εz, which is absent from Eq. (1),
is computed on the basis of the assumption that out-of-plane normal

stresses are negligible and is dependent on the material stiffness and
strain condition at the given point.

A layered approach is used to account for the nonlinear varia-
tion of material stress and stiffness through the thickness of the
shell [Fig. 2(a)]. Local stresses are assumed to be constant over the
layer height and are integrated using a trapezoidal rule. In-plane
reinforcement layers can be defined in any planar orientation
and are represented discretely within the thickness, i.e., in-plane
reinforcement is not smeared within the concrete layers. If present,
out-of-plane reinforcement (oriented in local z) is treated in a
smeared manner as a property of the concrete layers. Integration
of the concrete and steel layer stresses through the thickness of
the element yields the sectional force resultants presented in
Fig. 2(b).

midsurface

x

z

plane normal to
midsurface

plane after deformation

plane prior to
deformationδ w

δ xφx
y

local axis

Fig. 1. Mindlin element deformation behavior
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Fig. 2. Shell element attributes: (a) layered modeling approach; (b) sec-
tional force resultants
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RC Material Modeling

In the analysis procedure presented, cracked RC is modeled in
accordance with the formulations of the disturbed stress field model
(DSFM) (Vecchio 2000). Developed as an extension of the modi-
fied compression field theory (MCFT) (Vecchio and Collins 1986),
the DSFM serves as a generalized approach for modeling the
behavior of RC elements subjected to biaxial loading conditions.
Central to the model is the treatment of cracked RC as an ortho-
tropic material with its own set of governing constitutive equa-
tions. Formulated as a smeared hybrid rotating-fixed crack model,
stresses and strains are treated in an average sense and are allowed
to gradually reorient as a result of changing load and material re-
sponse. The composite element, which consists of cracked concrete
and in-plane reinforcement, is governed by equations of equilib-
rium, compatibility, and constitutive material models. Although
cracks are considered smeared and stresses and strains are aver-
aged, a key feature of the DSFM is the consideration of the local
behavior at crack locations that accounts for the influence of local-
ized stress conditions, variable or changing crack widths, and
crack-slip deformations along crack surfaces. The inclusion of
rigid body slip along the cracks in the element compatibility mod-
eling of the DSFM is one of the primary differences from the
formulations of the MCFT.

The DSFM and MCFT behavioral models have been heavily
cited, referenced, and discussed throughout the database of RC
literature and, as such, detailed formulations pertaining to the
two models are not presented. However, minor procedural mod-
ifications required to apply the DSFM in the analysis of RC
shell elements under three-dimensional loading conditions are
summarized.

Local Conditions at the Crack

Examination of local behavior at crack locations is a key feature of
the DSFM. Crack-slip deformations are assumed to stem directly
from the development of shear stresses on the crack surface and are
incorporated in an averaged sense in the governing compatibility
relations.

Fig. 3 illustrates a cracked RC element that is subjected to three-
dimensional stress conditions and contains one arbitrarily oriented

reinforcement component, which is denoted as reinforcement com-
ponent i. Examination of the principal planes illustrated in Fig. 3
and defined according to net concrete strains shows that in the case
of cracking in the 1-direction, average concrete stresses fc2 and
fc3, both of which were assumed to be compressive in this sample
case, have no influence on the local stresses at the crack location.
To maintain equilibrium in the principal 1-direction, increased
reinforcement stress across the crack, fsicr, is required to balance
the average concrete tensile stress fc1, which is attributed to tension
stiffening effects. In turn, shear stress on the crack surface balances
the stress in the 2- and 3-directions resulting from the localized
increase of reinforcement stress.

To accommodate the three-dimensional nature of the local
behavior at the crack locations, the magnitude of the resultant shear
stress on the crack in the 1-direction vci;1 is calculated as the vector
sum of the local shear stresses vci;12 and vci;13 presented in Fig. 3
[refer to Eq. (2)]. This resultant local shear stress is used in accor-
dance with the relations of the DSFM to calculate slip deforma-
tions and average slip strains, which are considered in the element
compatibility

vci;1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ci;12 þ v2ci;13

q
ð2Þ

Compression Softening

In the original formulation of the DSFM, the compression softening
parameter βd for an element subjected to biaxial stress conditions is
computed from (Vecchio 2000)

βd ¼
1

1þ CsCd
≤ 1.0 ð3aÞ

Cd ¼ 0.35ð−εc1=εc2 − 0.28Þ0.80 ð3bÞ
where εc1 and εc2 represent the net tensile and net compressive
strains in the concrete, respectively; and Cs is a factor used to
specify whether or not slip deformations are considered in the
analysis. To account for the presence of three-dimensional stress
conditions, Cd is computed from the following:

If εc2 > 0∶Cd ¼ 0.35
�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2c1 þ ε2c2

q
=εc3 − 0.28

�0.80 ð4aÞ

If εc2 ≤ 0∶Cd ¼ 0.35ð−εc1=εc3 − 0.28Þ0.80 ð4bÞ

If the intermediate principal concrete strain εc2 is compressive or
zero, Eq. (4) is of the same form as that for an element under biaxial
stress conditions. If εc1 and εc2 are both tensile, the compression
softening factor is a function of an effective tensile strain, which is
computed as the vector sum of the principal tensions. This approach
has been used previously to analyze RC elements under three-
dimensional loading conditions in accordance with the MCFT
(Kirschner and Collins 1986; Adebar and Collins 1991; Polak and
Vecchio 1993).

Finite-Element Implementation

Material Matrix Development

In the procedure developed, concrete and steel layers are analyzed
individually and comprise unique contributions toward the stiff-
ness matrix forming the shell element. Material matrices for con-
crete and steel are developed separately; however, their material

2

3

1

1

32

fc1fc1

fc3

fc3
fc2

fc2

fsi,13fsi,12

fsicr,12

vci,12 fsicr,13

1

vci,13

y

z

x

cracked RC element

crack surface

steel reinforcing bar

Fig. 3. Cracked RC element under three-dimensional stress conditions
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responses are somewhat interdependent. To evaluate concrete
material behavior, steel reinforcement layers are smeared across
the width of the element and through some portion of the element
thickness. Normal to the plane, the tributary area pertaining to an
individual steel component is assumed to extend a distance of 7.5
times the bar diameter from the reinforcement location, as sug-
gested by CEB-FIP MC90 (Comité EURO-International du Béton
1990) (Fig. 4). Concrete layers that lie within this tributary rein-
forcement area are subject to tension-stiffening effects and require
examination of the local behavior at crack locations. However, it is
important to note that the reinforcing bars are not considered in a
smeared sense when evaluating stiffness contributions from steel
layers, but are treated discretely as additional layers comprising the
RC shell element.

In the general case, the total strains, ε, acting within a concrete
layer of the shell element are composed of (1) net strains, εc,
(2) elastic offsets, εoc , which may include thermal strains, shrinkage
strains, expansions due to Poisson’s effect and dilatation, (3) plastic
offsets, εpc , that represent permanent damage incurred under prior
loading, and (4) crack-slip strains that result from shear slip on the
crack surface, εsc, which are inherent to relations of the DSFM. The
total concrete strains can be expressed as

fεg ¼ fεcg þ fεocg þ fεpcg þ fεscg
¼ h εx εy εz γxy γxz γyz i ð5Þ

Assuming that reinforcement and concrete possess perfect bond,
the total strains developed in the ith steel layer are equal to the total
strains in the concrete at common locations. The total reinforce-
ment strains are composed of (1) net strains, εs;i, (2) elastic offsets,
εos;i, which may include thermal strains and prestrains, and (3) plas-
tic offsets, εps;i, that represent yielding or damage incurred under
prior loading

fεgi ¼ fεsgi þ fεosgi þ fεps gi ¼ h εx εy εz γxy γxz γyz ii
ð6Þ

Recall that the out-of-plane strain term εz is not calculated from
the displacement field of the shell element but is computed on the
basis of the zero out-of-plane stress assumption. The following
subsection provides the calculation of εz.

Concrete principal strains (εc1; εc2; εc3) and their corresponding
direction cosine vectors are calculated using the local net strains
presented in Eq. (5). The concrete principal stresses (fc1; fc2; fc3)
are computed in accordance with the formulations of the DSFM.
Secant moduli pertaining to the concrete material stiffness in the
principal stress directions are calculated using

Ēc1 ¼
fc1
εc1

; Ēc2 ¼
fc2
εc2

; Ēc3 ¼
fc3
εc3

ð7Þ

The secant shear moduli are calculated according to

Ḡc12 ¼
Ēc1 · Ēc2

Ēc1 þ Ēc2
; Ḡc13 ¼

Ēc1 · Ēc3

Ēc1 þ Ēc3
;

Ḡc23 ¼
Ēc2 · Ēc3

Ēc2 þ Ēc3
ð8Þ

The orthotropic concrete material matrix, ½Dc� 0, relative to the
principal stress directions is assembled as

½Dc� 0 ¼

2
66666666664

Ēc1 0 0 0 0 0

0 Ēc2 0 0 0 0

0 0 Ēc3 0 0 0

0 0 0 Ḡc12 0 0

0 0 0 0 Ḡc13 0

0 0 0 0 0 Ḡc23

3
77777777775

ð9Þ

Recall that Poisson’s effect is treated as an elastic offset and,
as such, the material matrix presented in Eq. (9) will always be
diagonal. Transformation to the local x, y, z-coordinate system
is performed using an appropriate transformation matrix ½Tc� (Cook
et al. 1989)

½Dc� ¼ ½Tc�T ½Dc� 0½Tc� ð10Þ

Although the matrix presented in Eq. (9) will always be diago-
nal, the local material stiffness matrix presented in Eq. (10) can be
fully populated, and, as such, there is a coupled effect between the
in-plane and out-of-plane responses of the RC shell element.

Analogous to the approach used to evaluate the local concrete
material matrix ½Dc�, stiffness contributions from in-plane rein-
forcement layers are developed from their respective secant moduli
and used to compute reinforcement material matrices. Assuming
that the reinforcing bars do not carry shear stresses, i.e., dowel
stresses, the contribution from the ith reinforcement layer is
defined as

½Ds� 0i ¼

2
66666666664

ρs;i · Ēs;i 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
77777777775

ð11Þ

where ρs;i = reinforcement ratio corresponding to the ith layer
of reinforcement, and the corresponding secant modulus is com-
puted from

Ēs;i ¼
fs;i
εs;i

ð12Þ

The in-plane reinforcement stiffness matrix is transformed
from the longitudinal axis of the reinforcing bar to the local x; y;
z-coordinate system. The resulting local reinforcement stiffness
matrix for the ith layer of reinforcement containing only in-plane
stiffness contributions is

½Ds�i ¼ ½Ts�T ½Ds� 0i ½Ts� ð13Þ

If present, out-of-plane reinforcement is treated as a smeared
property of the concrete layers. The composite material matrix

concrete
layers

steel layer i

steel layer j

7.5 x db,i

7.5 x db, j

tension stiffened
region

tension stiffened
region

d : steel reinforcing bar diameterb

Fig. 4. Tension stiffening tributary regions
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½Dcz� represents the combined stiffness of the concrete and the
out-of-plane reinforcement oriented in the local z-direction

½Dcz� ¼ ½Dc� þ ½Dz� ð14Þ
where ½Dz� = local material matrix for the out-of-plane reinforce-
ment and is computed directly without transformation as

½Dz� ¼

2
66666666664

0 0 0 0 0 0

0 0 0 0 0 0

0 0 ρz · Ēz 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
77777777775

ð15Þ

where Ēz is calculated in the same manner as the secant moduli for
in-plane reinforcement contributions [Eq. (12)]; and ρz represents
the out-of-plane reinforcement ratio.

The stresses in the concrete layers are calculated using the
following equilibrium relation:

fσczg ¼ ½Dcz�fεg − fσo
czg ð16Þ

To accommodate strain offsets, the pseudostress vector fσo
czg is

required in the preceding equilibrium equation. The pseudostresses
pertaining to the concrete layers are calculated as

fσo
czg ¼ fσo

cg þ fσo
zg ¼ h σo

czx σo
czy σo

czz τoczxy τoczxz τoczyz i
ð17aÞ

fσo
cg ¼ ½Dc�ðfεocg þ fεpcg þ fεscgÞ ð17bÞ

fσo
zg ¼ ½Dz�ðfεozg þ fεpz gÞ ð17cÞ

Similarly, steel layer stresses are calculated using Eq. (18a),
and the steel layer pseudostress vector fσo

sg is calculated from
Eq. (18b)

fσsg ¼ ½Ds�fεg − fσo
sg ð18aÞ

fσo
sg ¼ ½Ds�ðfεosg þ fεps gÞ ð18bÞ

Enforcing Zero Normal Stress

To enforce the zero normal stress condition of the shell element,
two modifications are required in the solution algorithm em-
ployed for the concrete layers: (1) modification of the combined
concrete material matrix ½Dcz�, and (2) modification of the con-
crete pseudostress vector fσo

czg. Modification of in-plane steel
reinforcement layers is not required because the steel material
matrices do not contain out-of-plane (normal or shear) stiffness
terms.

Because the total out-of-plane strain εz is not directly calculated
from the displacement field of the finite element, the assumption
that the out-of-plane normal stress is negligible, i.e., σczz ¼ 0,
results in

εz ¼
1

Dcz33

ðσo
czz −Dcz31 · εx −Dcz32 · εy

−Dcz34 · γxy −Dcz35 · γxz −Dcz36 · γyzÞ ð19Þ

To enforce the zero out-of-plane stress condition in the material
matrix, εz in Eq. (16) is replaced by the right-hand side of Eq. (19).
Simplification yields the removal of the column and row entries
pertaining to the local z-direction, i.e., row 3 and column 3 of the
6 × 6 matrix, according to

D�
czij ¼ Dczij −

Dczi3Dcz3j

Dcz33

ð20Þ

The modified material matrix ½D�
cz� is 5 × 5 in dimension and no

longer dependent on εz or σczz. The pseudostress vector requires
similar modification

σo�
czi ¼ σo

czi −
Dczi3σ

o
czi

Dcz33

ð21Þ

The resulting equilibrium equation is independent of the out-
of-plane normal stress and strain and is of the form required for
implementation within the shell finite-element formulation

8>>>>>>><
>>>>>>>:

σczx

σczy

τ czxy
τ czxz
τ czyz

9>>>>>>>=
>>>>>>>;

¼ ½D�
cz�5×5

8>>>>>>><
>>>>>>>:

εx

εy

γxy

γxz

γyz

9>>>>>>>=
>>>>>>>;

−

8>>>>>>><
>>>>>>>:

σo�
czx

σo�
czy

τo�czxy
τo�czxz
τo�czyz

9>>>>>>>=
>>>>>>>;

ð22Þ

Solution Algorithm
The adopted solution method uses a total load secant stiffness
approach. The stiffness matrix ½K� is evaluated using the secant
material matrices developed previously. The full loads acting on
the structure are assembled in the total nodal load vector fFg, and
the nodal displacement vector fδg represents the total displace-
ments under fFg. Expressed generally

fδg ¼ ½K�−1fFg ð23Þ

The global stiffness matrix is developed through assembly of the
elemental stiffness matrices ½ke�. Similarly, elemental load vectors
ffeg comprise the global nodal load vector

½K�←
X
e

½ke� ð24Þ

fFg←
X
e

ffeg ð25Þ

where the elemental stiffness matrices are defined as

½ke� ¼
Z
vol
½B�

T
½D�½B�dv ð26Þ

To accommodate the through-thickness integration procedure
employed, matrix ½D� in Eq. (26) represents either a concrete or
steel layer material matrix, and matrix ½B� represents the strain-
displacement relations for a given point within the element. Pseu-
dostresses resulting from strain offsets are accommodated by way
of pseudoload vectors denoted as ffoeg. Pseudoload vectors are
calculated from the following relation:

ffoeg ¼
Z
vol
½B�fσogdv ð27Þ
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where fσog represents the concrete and steel layer pseudo-
stress vectors defined previously. Inclusion of the structure pseu-
doload vector fFog results in the following revised equilibrium
expression:

fδg ¼ ½K�−1ðfFg þ fFogÞ ð28Þ
Owing to the nonlinear nature of the problem, the unknown no-

dal displacement values fδg are required for the development of the
global stiffness matrix ½K�. As such, an iterative solution procedure
is adopted. For a given load step or increment, the iterative pro-
cedure is repeated until the solution has converged within a prede-
fined tolerance or a predefined maximum number of iterations has
been performed. Convergence is evaluated using the change in the
nodal displacement values computed from one iteration to the next.

Out-of-Plane Shear

From a preliminary assessment of the analytical procedure devel-
oped, it was found that the constant out-of-plane shear strain dis-
tribution employed through the depth of the Mindlin shell element
(Fig. 5) typically resulted in overestimation of out-of-plane shear
strength, particularly in the case of shear-critical elements. For sim-
ple beam-type specimens under combined flexure and out-of-plane
shear, the analytical procedure computed artificially large shear
stresses within the uncracked compressive regions of the beams
and, in some cases, allowed the full shear demand to be carried in
less than 10% of the section height. Moreover, the largest strength
overestimations were found to occur in members containing no
out-of-plane shear reinforcement, which was of primary concern
given that RC shell structures often contain little or no out-of-plane
reinforcement.

Prior studies employing sectional analyses have demonstrated
successes in estimating the out-of-plane shear strength of RC mem-
bers using a broad range of methods. The simpler approaches that
were involved assumed out-of-plane shear strain or shear flow
distributions (Vecchio and Collins 1988) and some of the more
complex methods utilized rigorous dual-section analyses (Vecchio
and Collins 1988) or explicit numerical techniques (Bentz 2000).
Although the complex methods have generally demonstrated supe-
rior accuracy over simpler approximate solutions, they are compu-
tationally expensive and are not well-suited for finite elements that
typically rely on deformation assumptions in their formulation,
e.g., Mindlin theory.

A vast amount of research has been performed in an effort
to improve on the constant out-of-plane shear strain distribution
commonly employed for layered finite elements. The research
can generally be divided into two categories: (1) development of
higher order shear deformation theories (HSDTs), which serve as
a replacement of first-order theory, and (2) the development of

modification methods that are used in conjunction with first-order
theory. In the case of higher order theories, nonuniform out-of-
plane shear strains arise from the use of higher order equations de-
scribing the element displacement field. The primary benefit of this
approach is that nonuniform through-thickness shear strains are
calculated directly from nodal displacements without subsequent
calculation. However, HSDT approaches often require the solution
of additional degrees of freedom and these methods tend to deviate
from the well-accepted plane section assumption. Some have pro-
posed simple modifications to first-order shear deformation theory
which incorporate nonuniform out-of-plane shear strain distribu-
tions but still consider plane section behavior (Tanov and Tabiei
2000; Han et al. 2008). However, the use of such methods has been
primarily limited to the analysis of thin laminar-composite ele-
ments, and it has been suggested that the methods involving partial
modification of the element displacement field may result in appre-
ciable error for other types of structural elements (Han et al. 2008).

In most modified first-order formulations, alteration of the
strain-displacement relations form the basis of the imposed mod-
ifications; however, the procedure developed in this study introdu-
ces an effective out-of-plane shear strain concept that is used to
alter the out-of-plane shear response without modification of the
element displacement field. This approach is developed specifically
for nonlinear analyses and is suitable for shell elements possessing
either partial or fully populated stiffness matrices with coupled
in-plane and out-of-plane relations. The presented formulation is
developed on the basis of an effective parabolic out-of-plane shear
strain distribution through the depth of the element; however, the
equations can be recast to accommodate other shear strain approx-
imations. Prior analytical studies employing the parabolic shear
strain approximation through the depths of RC beams under com-
bined axial forces, shear forces, and bending moments have been
shown to reasonably estimate solutions obtained using more rigor-
ous computation methods (Vecchio and Collins 1988).

Recall from Eq. (1) that the local strain state for concrete layer i
(Fig. 5), which was developed from the element displacement field,
is expressed as

fεgi ¼ h εx;i εy;i γxy;i γxz;i γyz;i i ð29Þ

To introduce the effective strain concept, the out-of-plane
shear strain terms in Eq. (29) are assumed to be composed of two
contributing parts: effective strains and ineffective strains. Effective
shear strains are used to define concrete material stiffness and may
be composed of net strains, elastic offsets, plastic offsets, and slip-
strain offsets [refer to Eq. (5)]. The ineffective shear strains are
independent of material response and treated as additional elastic
offsets that are computed in accordance with some assumed out-of-
plane shear strain distribution. In the case of the parabolic out-of-
plane shear strain distribution considered in this study, the effective
and ineffective shear strains are defined using

γxz;i ¼ γexz;i þ γiexz;i ¼ γxz;ið1 − ζ2i Þ þ γxz;iðζ2i Þ ð30aÞ

γyz;i ¼ γeyz;i þ γieyz;i ¼ γyz;ið1 − ζ2i Þ þ γyz;iðζ2i Þ ð30bÞ

where the γe terms represent the effective out-of-plane shear strains;
the γie terms represent the ineffective shear strains; and ζi is used
to define the location of concrete layer i within the depth of the
shell element (refer to Fig. 5).

The local concrete material matrix pertaining to layer i, ½D�
cz�, is

computed on the basis of the DSFM using the modified strain vec-
tor fεegi, which is composed of the original in-plane strain terms
and effective out-of-plane shear strain terms

Layered

γ e

Section

γ i γ i

Effective
Shear-StrainShear-Strain

Constant (Mindlin)

(1–ζ )i
2

i

ζ

+1.0

–1.0

ζ

γ

Fig. 5. Out-of-plane shear strain distribution
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fεegi ¼ h εx;i εy;i γxy;i γexz;i γeyz;i i ð31Þ

Eq. (32) presents the resulting equilibrium relation. The intro-
duction of the pseudostress vector fσiegi is used to modify the re-
lation such that local stresses are calculated using the original local
strain vector presented in Eq. (29)

fσczgi ¼ ½D�
cz�ifεegi − fσo�

czgi ð32aÞ

fσczgi þ fσo�
czgi ¼ ½D�

cz�ifεegi ¼ ð½D�
cz�ifεgi − fσiegiÞ ð32bÞ

where the pseudostress fσiegi is calculated as

fσiegi ¼ ½D�
cz�ih 0 0 0 γiexz;i γieyz;i i ð33Þ

The pseudostress vector representing the ineffective shear strain
contribution is considered in the solution algorithm by way of no-
dal pseudoloads using the methodology described previously.

This out-of-plane modification method ensures that equilibrium
is always preserved, with sectional forces counterbalancing forces
computed from the global equilibrium. The material stiffness ma-
trix remains a function of the original strain-displacement relations
permitting simple finite-element implementation and insignificant
computational cost.

To illustrate the effect of the out-of-plane shear strain modifi-
cation procedure developed, consider the computed sectional re-
sponses for RC Beam VS-OA1 presented in Fig. 6. The simply
supported RC beam formed part of an experimental investigation
performed by Vecchio and Shim (2004) and contained no out-of-
plane shear reinforcement. The beam had a span of 3,660 mm, an
overall depth of 552 mm, and was monotonically loaded to failure
by way of increasing displacements applied at the beam’s midspan.
A half-span finite-element model of the symmetric beam was cre-
ated using eight shell elements, which were subdivided into 30
equal thickness concrete layers and two longitudinal reinforcement
layers (Fig. 7). Fig. 6(b) shows that the out-of-plane sectional
behavior of the beam, both normal and shear, is significantly influ-
enced by the out-of-plane shear modification procedure intro-
duced. Under identical loading conditions, the effective parabolic
shear strain assumption provides reduced shear stresses in the

near-surface compressive layers of the section, increased shear
strains at the middepth of the section, reduced shear strains at the
extreme fibers of the section, and increased out-of-plane normal
strains throughout the cracked layers of the section. The computed
load-deflection behaviors for Beam VS-OA1 resulting from the
constant and effective parabolic shear strain profiles are compared
alongside the experimental response in Fig. 8. Illustrated by the
abrupt and severe reductions in the computed load resistance
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Fig. 6. Sectional analysis of RC Beam VS-OA1: (a) beam cross section; (b) computed sectional response; Mx ¼ 160 kN · m; Vxz ¼ 155 kN
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immediately following the maximum estimated capacities, both
analyses were successful in capturing the brittle diagonal tension
failure that governed the ultimate behavior of the shear-critical RC
beam. However, the results developed using the effective out-of-
plane shear strain procedure provided a strength estimate that is
approximately 25% lower than that computed using the constant
shear strain assumption, and, in this case, the use of the parabolic
strain profile estimated the capacity of the beam within approxi-
mately 5% of the experimentally reported value.

Verification

To assess the adequacy of the developed analysis procedure, the
results obtained from analyses of the RC slab and shell elements
are presented. The relevance of the experimental data selected for
verification is discussed, and information regarding finite-element
model development is provided. In applying the formulations of the
DSFM, the supporting material models listed in Table 1 were used
for all of the reported analyses.

Jaeger and Marti Slabs

In 2005, an international prediction competition involving the
analysis of large-scale RC slabs subjected to out-of-plane shear
was organized (Jaeger and Marti 2009b). The four slabs comprising

the competition, denoted as Slabs A–D, were designed to study the
effect of several influential variables: the overall slab height h,
which was 200 or 500 mm, the orientation of the in-plane reinforce-
ment φ, which was aligned with the slab edges or skewed by an
angle of 45°, and the out-of-plane reinforcement ratio ρz. The slabs
constructed with skewed reinforcement configurations serve as
particularly appealing candidates for analytical verification be-
cause the skewed reinforcement configurations were reported to
produce three-dimensional stress states in the concrete. Each slab
was constructed with a region that contained no out-of-plane shear
reinforcement, and each slab was tested twice under one-way sim-
ply supported loading conditions. Test 1 was performed on slab
segments containing no out-of-plane reinforcement, and Test 2 was
performed on slab segments with shear reinforcement [Fig. 9(a)].
The cylindrical compressive strengths of the concretes comprising
the slabs ranged from approximately 52 to 59 MPa, and the in-
plane and out-of-plane reinforcement consisted of headed de-
formed steel bars with yield strengths ranging from approximately
480 to 550 MPa. Table 2 provides a summary of the reinforcement
configurations and geometric properties of the slabs.

A total of 36 layered shell elements were used to model each
slab. Taking advantage of symmetry, half-width finite-element
models representing the interior span and only one of the exterior
cantilever spans were created. The shell elements were subdivided
into 35 concrete layers. A clear cover of 20 mm was specified for
200-mm-deep slabs (Slabs A and B), and a clear cover of 50 mm
was applied for 500-mm-deep slabs (Slabs C and D). The in-plane
reinforcement was modeled using four additional steel layers for
slabs with skewed reinforcement and three additional layers for the
slabs with nonskewed reinforcement. When present, out-of-plane
reinforcement was smeared throughout the noncover concrete
layers. Fig. 9(b) presents the finite-element mesh created for Slabs
C and D. The analyses were performed in a displacement controlled
manner, with incremental displacements applied to the cantilever
load location considered in the testing program. Displacement
increments of 1 mm were used for Slabs A and B, and increments
of 2 mm were used for Slabs C and D.

Fig. 10 plots the computed moment-displacement responses
from each of the eight tests alongside the experimental results.
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Fig. 9. Specimen configuration and finite-element modeling; Jaeger and Marti Slabs C and D: (a) test setup; (b) finite-element mesh

Table 1. Material Models Considered

Model description Reference

Concrete compression curve Hoshikuma et al. (1997)
Compression softening Vecchio (2000)
Tension stiffening Bentz (2005)
Concrete confinement Kupfer et al. (1969), and

Richart et al. (1928)
Concrete dilatation Kupfer et al. (1969)
Crack slip distortions Walraven and Reinhardt (1981)
Crack spacing Comité EURO-International du

Béton (1990)
Reinforced hysteresis Seckin (1981)
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It is shown that the analyses of the slab segments without shear
reinforcement (Test 1) accurately captured the brittle shear failure
modes observed in the laboratory and provided strength estimates
within approximately 10% of the experimental values. Analyses of
the slab segments containing out-of-plane shear reinforcement
(Test 2) provided reasonable estimates of the ultimate capacities
but generally underestimated ductility. The reported flexural crush-
ing failure modes and development of lateral (y-direction in Fig. 9)
concrete crushing observed on the tension side surfaces of the slabs
containing skewed reinforcement were also captured in the analy-
ses of the shear strengthened slab segments. Lastly, because slab
height served as one of the primary variables considered in the test
series, it is worth noting that similar levels of accuracy were ob-
tained for both thin (h ¼ 200 mm) and thick (h ¼ 500 mm) slabs.
For example, in the case of Slabs A and C, which were nominally
identical with the exception of slab geometry, the experimental
shear stress capacities, taken as V=ðb · dÞ, obtained for the non-
shear reinforced slab segments (Test 1) were 1.35 and 1.08 MPa,

respectively. The computed shear stress capacities for Slabs A
and C were estimated to be 1.22 and 0.99 MPa, respectively. It
is evident that reduced shear stress capacity attributed to the in-
creased slab depth was captured in the analyses.

Jaeger and Marti concluded that the behaviors of the slabs
forming the competition were very difficult to capture analytically,
and predictions developed using finite-element analysis techniques
were generally found to produce poor slab response estimates.
On the basis of the criteria used to judge the competition entries
(Jaeger and Marti 2009a), the finite-element analysis results pre-
sented in this paper would have fared best. Albeit not blind, the
analyses were performed using simple finite-element meshing tech-
niques without refinement. No fine tuning of analysis parameters or
material models was performed, and the material models employed
required basic user input consisting of parameters that are easily
defined.

Adebar and Collins Shells

In the late 1980s, Adebar and Collins carried out an experimental
program (Adebar and Collins 1991) to investigate the interaction
behavior of RC elements subjected to combined in-plane and
out-of-plane shear forces. Shell-type RC elements that were ap-
proximately 1,600 × 1,600 mm, with thicknesses of either 310 or
410 mm, were tested using a large-scale machine capable of apply-
ing coexisting membrane forces, bending moments, and out-of-
plane shear forces (Kirschner and Collins 1986). Each shell element
was reinforced with two sets of orthogonal in-plane reinforcement
grids, with equal reinforcement ratios provided in the orthogonal
directions. Five of the shell elements that were similar in terms of
geometry, reinforcement configuration, and material properties but
were subjected to different membrane to out-of-plane shear stress
ratios have been analyzed using the proposed procedure. All of the

Table 2. Jaeger and Marti Slab Details

Slab property

Slab

A B C D

h (mm) 200 200 500 500
deff (mm) 156 162 390 405
L (mm) 2,620 2,620 6,550 6,550
b (mm) 800 800 2,000 2,000
φ (degrees) 45 0 45 0
ρn (%)a 1.812 1.745 1.812 1.745
ρt (%)a 1.812 0.873 1.812 0.873
ρz;Test−1 (%) 0 0 0 0
ρz;Test−2 (%) 0.611 0.309 0.611 0.308
aFig. 9(a) for governing n, t-coordinate system.
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shell elements considered in the following discussion were 310 mm
thick, contained in-plane reinforcement skewed at an angle of 45°
from the specimen edges, and were lightly reinforced in the out-of-
plane direction (ρz ¼ 0.08%). Table 3 presents a summary of the
details and loading conditions considered for these shell elements.

The RC shell elements were subjected to out-of-plane shear
forces and bending moments about a single axis. Taking advantage
of symmetry, a finite-element mesh consisting of 18 layered shell
elements representing half of the planar surface of the specimens
was developed and used for all of the analyses performed (Fig. 11).
The layered shell finite elements were subdivided into 30 concrete
layers, and an additional four layers were used to represent the in-
plane reinforcing bars. A clear cover of 20 mm was considered for
the top and bottom surfaces of the elements, and out-of-plane shear
reinforcement was smeared throughout the core concrete layers.
Loads in the form of normal membrane forces and out-of-plane
shear forces were applied along the perimeter of the finite-element
mesh and produced conditions of uniform in-plane shear stress and

constant out-of-plane shear force, respectively. Fig. 11 illustrates
the variation of the bending moment and the constant out-of-plane
shear force attributed to the restraint and loading conditions pro-
vided. Loads were applied in fixed proportions using increments
of approximately 1% of the reported experimental load capacities.
Table 4 summarizes the analytical results and compares them with
the experimental values. In addition, Fig. 12 plots the analytical
in-plane to out-of-plane shear interaction behavior alongside the
experimental results. The presented analytical response was com-
puted using the average nominal properties listed in the figure.

Fig. 12 shows that the general trend developed from the finite-
element analyses agrees well with the strength interaction response
observed in the experimental program. In agreement with reported
results, the in-plane compression developed perpendicular to the
bending plane, i.e., in a direction that would contribute to the clos-
ing of the cracks developed under the out-of-plane loads, led
to increased shear resistances and failure modes controlled by
concrete crushing (refer to the right-hand side of Fig. 12). Additive
in-plane tension led to reduced element capacities and tension-
controlled shear failures that were estimated to occur shortly after
yielding of the out-of-plane shear reinforcement. With the excep-
tion of SP8, which was subjected to pure in-plane shear stress con-
ditions, all of the shell elements experienced out-of-plane shear
failures before yielding the in-plane reinforcement. The governing
failure modes estimated from the finite-element analyses were
in agreement with those observed. For the five shell elements

Table 3. Adebar and Collins Shell Details

Element details

Shell

SP3 SP4 SP7 SP8 SP9

Loadinga 0∶1 4∶1 −4∶1 1∶0 −8∶1
f 0
c (MPa) 49.8 52.4 54.1 52.9 49.6

Aggregate (mm)b 10 10 20 20 20
ρs (%)c 3.58 3.58 3.75 3.75 3.75
fy (MPa) 480 480 536 536 536
aRatio of in-plane shear stress to out-of-plane shear stress.
bMaximum nominal aggregate size.
cTotal reinforcement ratio in each planar orthogonal direction.
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Fig. 11. Loading configuration and finite-element mesh; Adebar and
Collins shells

Table 4. Results for Adebar and Collins Shells

Shell

Experiment (EXP) Analysis (AN)

AN=EXP

vu;OOP
(MPa)a

vu;IP
(MPa)

vu;OOP
(MPa)a

vu;IP
(MPa)

SP3 1.75 0 1.54 0 0.88
SP4 2.15 8.60 2.44 9.76 1.13
SP7 1.60 −6.40 1.41 −5.64 0.88
SP8 0 �16.80 0 �18.60 1.11
SP9 1.22 −9.76 1.23 −9.84 1.01
Mean — — — — 1.00
SD (%) — — — — 10.8

Note: IP = in plane; OOP = out of plane.
aV=ðb · hÞ.
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Fig. 12. Computed shear stress interaction response; Adebar and
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considered, the mean analytical-to-experimental capacity ratio was
determined to be a value of 1.00, with a standard deviation of ap-
proximately 11%. For RC elements such as these, which contain
very light through-thickness shear reinforcement and are subjected
to appreciable out-of-plane shear loads, this level of precision is
deemed adequate.

Conclusions

In this study, a procedure for nonlinear finite-element analysis of
RC slabs and shells is presented. An effective out-of-plane shear
strain concept is introduced to modify the through-thickness re-
sponse of the layered shell finite elements employed. The adequacy
of the resulting nonlinear analysis program was verified using ex-
perimental data pertaining to RC slabs and shells subjected to com-
bined in-plane and out-of-plane loading scenarios, several of which
were governed by out-of-plane shear failures. The work presented
in this study supports the following conclusions:
1. The nonlinear finite-element analysis procedure that was de-

veloped in accordance with the formulations of the disturbed
stress field model serves as a viable approach for the analysis
of RC slabs and shell structures under three-dimensional
loading conditions.

2. The introduction of an effective out-of-plane shear strain pro-
cedure was shown to significantly alter the through-thickness
response of the Mindlin layered finite elements and provided
improved shear strength estimates for the shear-critical RC
elements. Furthermore, the modification method is simple to
implement, requires insignificant additional computation cost,
and can be employed in cases in which in-plane and out-of-
plane material behavior is coupled, i.e., the material matrix is
fully populated.

3. The analysis procedure was shown to provide accurate esti-
mates of strength, damage development, and governing modes
of failure for RC elements that were governed by brittle shear-
critical out-of-plane failure modes.

4. The behaviors of RC elements controlled by flexural crush-
ing were captured well in terms of capacity, damage, and
governing failure mode; however, analytical estimates tended
to underestimate the ductility levels that were observed
experimentally.
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