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Simplified Diverse Embedment Model for Steel Fiber-
Reinforced Concrete Elements in Tension
by Seong-Cheol Lee, Jae-Yeol Cho, and Frank J. Vecchio

crack width, Marti et al.11 developed a simple formula that 
describes a relationship between crack width and tensile 
stress. Later, introducing an engagement factor to consider 
the effect of fiber inclination angle on fiber pullout behavior, 
Voo and Foster12 developed the Variable Engagement Model 
(VEM), in which the random distribution of fibers in a three-
dimensional (3-D) infinite element was taken into account. 
However, the appropriateness of these two models for SFRC 
members with hooked-end fibers is questionable because a 
uniform bond stress along a fiber was assumed. Leutbecher 
and Fehling13 presented a model that considers the effect of 
fibers on crack widths in SFRC members with conventional 
reinforcing bars, but this model also assumed an average 
bond stress between the fiber and matrix and mainly focused 
on members with straight steel fibers. Stroeven14 developed 
a formulation that considered varying uniform bond stress 
along a fiber according to the fiber type; the slope for the 
descending branch in the relationship between tensile stress 
and crack width was adjusted to the fiber type. Recently, Lee 
et al.15,16 proposed the Diverse Embedment Model (DEM), in 
which the tensile stresses due to the frictional bond behavior 
and the mechanical anchorage effect were separately evalu-
ated from the pullout behavior of a single straight fiber or 
hooked-end fiber.

A simplified version of the Diverse Embedment Model (DEM) for 
steel fiber-reinforced concrete (SFRC) is derived by eliminating 
the double numerical integration, which complicates the calcu-
lation procedure of the DEM. To simplify the DEM, fiber slip on 
the longer embedded side is not considered in the calculation of 
the fiber tensile stress at a crack, while coefficients for frictional 
bond behavior and mechanical anchorage effect are incorporated 
to prevent overestimation of the tensile stress attained by fibers. 
The tensile stress behavior of SFRC predicted by the Simplified 
DEM (SDEM) shows good agreement with that obtained from 
the DEM; hence, the model’s accuracy has largely been retained 
despite the simplification. In comparisons with test results reported 
in the previous literature, the SDEM is shown to simulate not only 
the direct tensile behavior but also the flexural behavior of SFRC 
members. The SDEM can easily be implemented in currently avail-
able analysis models so that it can be useful in the modeling of 
structural behavior of SFRC members or structures.

Keywords: anchorage; bond; steel fiber; steel fiber-reinforced concrete; 
tensile stress.

INTRODUCTION
It is well-known that, unlike normal concrete, steel fiber-

reinforced concrete (SFRC) members typically demonstrate 
a ductile post-cracking behavior due to the steel fibers 
bridging the cracks. With this beneficial aspect of SFRC, 
many researchers1-4 have conducted theoretical or experi-
mental investigations into the practical use of SFRC in 
structural members subjected to various loading condi-
tions. However, although the structural behavior of SFRC 
members subjected to tension has been experimentally 
studied by many researchers, the practical application of 
SFRC in actual construction is still muted. One reason for 
this is that most research efforts have mainly focused on 
qualitative evaluations for the tensile behavior of SFRC 
members5-9 rather than on the development of a rational 
model that can be easily employed to predict the structural 
behavior of SFRC members. In addition, the tensile behavior 
of SFRC members is dominated by the pullout behavior of 
each single fiber bridging a crack which, in turn, is affected 
by the steel fiber type. The influence of steel fiber type on 
the tensile behavior can clearly be seen in Fig. 1, in which 
the post-cracking tensile stresses are normalized by the peak 
tensile stress after initial cracking. As shown in this figure, 
the SFRC member with hooked-end fibers shows a steeper 
decrease of the post-cracking tensile stress response due 
to straightened or fractured end hooks and deterioration of 
concrete in the vicinity of the fiber.10

Several researchers have made contributions to the devel-
opment of rational models for calculating the tensile behavior 
of SFRC members; some of the more influential works are 
summarized in Table 1. By assuming that the number of 
fibers bridging a crack decreases linearly with increasing 

Fig. 1—Normalized tensile behavior of SFRC members in 
tension tested by Lim et al.6 (1 mm = 0.0394 in.)
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for 18 SFRC specimens. In the DEM, however, one must 
undertake a double numerical integration to calculate the 
average tensile stress of steel fibers at a crack. This compli-
cates the implementation of the DEM into various analysis 
models19-22 and programs23,24 useful for the calculation of 
the structural behavior of SFRC members with or without 
conventional reinforcing bars.
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Figure 2 compares the responses calculated from the 
various models against results from a test conducted by 
Susetyo17 in which hooked-end steel fibers were used. It 
can be seen that the DEM provides the closest correlation 
to the test results, particularly for the rapid decrease in the 
tensile stress. Similar trends and correlations were seen with 
other specimens tested by several researchers6,17,18; refer to 
the Appendix*, in which comparison results are presented 

*The Appendix is available at www.concrete.org in PDF format as an addendum to 
the published paper. It is also available in hard copy from ACI headquarters for a fee 
equal to the cost of reproduction plus handling at the time of the request.

Table 1—Models for SFRC members in tension
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where w2 is degrees of planar fiber orientation; and k = 8 or 4 for a straight or hooked-end fiber, respectively.

Lee et al.15,16 (DEM)* , ,f f f f cr avgf V= a s

where ( )2 2
, , ,0 0

2 , sinfl
f cr avg f cr a a

f

l d dl
l

πs = s q q q∫ ∫ ; and sf,cr is fiber tensile stress at a crack.

*In these models, tensile stress due to tension softening of concrete matrix should be added.

Fig. 2—Comparison of various models for SFRC members 
in tension. (Note: 1 mm = 0.0394 in.)
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A simplified version of the DEM can be formulated by 
eliminating the double numerical integration and replacing 
it with easily determined coefficients. Thus, the Simplified 
Diverse Embedment Model (SDEM) is more amenable to 
practical applications without significant loss of accuracy.

RESEARCH SIGNIFICANCE
In this paper, the SDEM has been derived to predict 

the crack width-tensile stress behavior of SFRC members 
subjected to direct tension. The double numerical integration 
required by the DEM has been eliminated, while the accu-
racy has been preserved. Thus, the SDEM can be more easily 
implemented into existing models19-22 or programs23,24 for 
the analysis of SFRC members or structures. Consequently, 
the SDEM can be useful in the prediction of SFRC members 
with or without conventional reinforcing bars subjected to 
not only uniaxial tension but also various loading conditions 
because tensile stress attained by fibers are considerable not 
only under service load but also at failure.

DERIVATION OF SDEM
Fundamental assumption for SDEM

Within the DEM formulation, the pullout behavior of a 
single fiber embedded on both sides is simplified by consid-
ering it to be a rigid-body translation, in which both the 
elongation of the fiber and the variation of slip along the 
fiber are neglected. With this simplification, the pullout 
behavior of a single fiber embedded on both sides can be 
analyzed in regard to three conditions: equilibrium, constitu-
tive behavior, and compatibility. The equilibrium condition 
is that the fiber tensile stress at a crack calculated from the 
shorter embedded side should be the same as that from the 
longer embedded side. For the constitutive response, the 
frictional bond behavior and mechanical anchorage effect 
are considered separately in the fiber slip and tensile stress 
relationships, taking into account the effect of the fiber 
inclination angle. The compatibility requirement is that the 
crack width be equal to the sum of the slips on both sides. 
However, the compatibility condition makes the calculation 
of the fiber tensile stress at a crack complicated because 
an iteration procedure is required for the calculation of the 
slip on either side. This compatibility, consequently, makes 
a double numerical integration inevitable in the calculation 
of the average fiber tensile stress at a crack, as presented in 
Table 1.

To simplify the DEM, one more assumption can be made 
with respect to compatibility: the crack width can be assumed 
to be the same as the slip on the shorter embedded side, while 
the slip on the longer embedded side is neglected. With this 
assumption, the iteration procedure required to analyze the 
pullout behavior of a single fiber embedded on both sides 
can be omitted so that the double numerical integration in 
the DEM can be averted. However, the effect of fiber slip 
of the longer embedded side on the fiber tensile stress at a 
crack can be significant in some cases. Hence, in this paper, 
two coefficients will be introduced within the formulation 
to compensate for the relaxed compatibility condition. The 
details follow.

Model derivation for frictional bond behavior
In the case of straight fibers, because it is assumed that the 

slip of a fiber occurs only on the shorter embedded side, a 
fiber tensile stress at a crack can be calculated by integrating 
the frictional bond stress along the shorter embedment part 

of the fiber. In this paper, a bilinear relationship between 
the bond stress and slip is employed for the frictional bond 
behavior of a fiber, as illustrated in Fig. 3, which considers 
the effect of the fiber inclination angle on the frictional bond 
behavior. The frictional bond strength is constant, while the 
slip at the peak increases with an increase of the fiber incli-
nation angle, as assumed in the DEM based on test results 
reported by Banthia and Trottier.25 Note that the slip reported 
in the figure is the same as the crack width because the slip 
of a fiber on the longer embedded side is neglected.

Because a bilinear relationship is employed for the fric-
tional bond behavior of fibers, two phases of response should 
be considered in the calculation of the fiber tensile stress at 
a crack. The first occurs when the crack width is so small 
that all fibers are still on the linearly ascending part of the 
constitutive law for the frictional bond behavior; the second 
prevails when the crack width is sufficiently large such that 
some fibers exhibit plastic frictional bond behavior, while 
other fibers remain in the pre-peak regime.

Without suitable compensation made, the fiber tensile 
stress can be significantly overestimated when the fiber 
slip on the longer embedded side is neglected, particularly 
for a fiber that does not reach the frictional bond strength. 
For example, consider a situation where the crack width is 
0.60sf; the fiber is perpendicular to the crack surface; and the 
shorter and longer embedment lengths are 0.25lf and 0.75lf, 
respectively. In this case, the calculated frictional bond stress 
on the shorter embedded side is 0.60tf,max, as determined 
from the frictional bond behavior presented in Fig. 3 with 
the fiber slip on the longer embedded side neglected. This 
frictional bond stress is significantly larger than the 0.45tf,max 
value that would be calculated if the fiber slip on the longer 
embedded side was considered. The effect of a fiber slip on 
the longer embedded side quickly diminishes after a fiber 
reaches the frictional bond strength because the slip on the 
longer embedded side decreases as the fiber tensile stress 
decreases with an increase in the crack width. Therefore, to 
consider the effect of slip of the fiber on the longer embedded 
side on the frictional bond stress of a fiber, a factor bf will 
be applied to fibers not having reached the frictional bond 
strength when the average frictional bond stress or the 
average fiber tensile stress is calculated.

For the first phase of response, in which the crack width 
is smaller than the slip sf corresponding to the initiation of 
plastic frictional bond behavior of a fiber perpendicular to 
the crack surface, the average frictional bond stress consid-
ering the random distribution of the fiber inclination angle 
illustrated in Fig. 4 can be calculated as Eq. (1)

Fig. 3—Frictional bond behavior of single fiber.
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( )1
, cos  for crit f f cr cr fs w w s−q = ≥ (2)

In the same manner as for the first phase, the average fric-
tional bond stress considering the random distribution of the 
fiber inclination angle can be derived for the second phase 
as Eq. (3)
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Assuming that the probability density for the shorter 
embedment length of a fiber is uniform at initial cracking, 
the average fiber tensile stress at a crack due to the frictional 
bond behavior can be calculated by integrating the average 
bond stress along a fiber as Eq. (4)
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Because the number of fibers bridging a crack surface per 
unit area is afVf/Af,26 the tensile stress of an SFRC element 
due to the frictional bond behavior can be calculated as 
Eq. (5)
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In Eq. (5), af can be assumed to be 0.5 for a 3-D infinite 
element, which can be used for general SFRC structures in 
which the dimensions are much larger than the fiber length.

In Fig. 5, the tensile stresses attained by straight fibers, as 
calculated by the SDEM according to Eq. (5), are compared 
with those predicted by the DEM. It can be seen that tensile 
stresses calculated by the simplified model show good agree-
ment with those determined from the more rigorous DEM, 
regardless of the variation of sf.

Model derivation for mechanical anchorage effect
In the case of hooked-end fibers, the effect of mechanical 

anchorage on the pullout behavior should be considered in 
addition to the frictional bond behavior. From the test results 
presented by Banthia and Trottier,25 the effect of the fiber 
inclination angle on the mechanical anchorage effect can be 
assumed to be the same as for straight fibers; the maximum 
force due to the mechanical anchorage is constant, while the 
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 for 
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f max cr f

f

w
d

w

w
w s

s

π

q

π t q q∫
t = β
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(1)

where wpq,f is the crack width at the initiation of plastic fric-
tional bond behavior of a fiber with an inclination angle of q, 
calculated as wpq,f = sf/cos2q; and bf is a coefficient reflecting 
the effect of fiber slip on the longer embedded side. From 
comparisons between the average fiber tensile stresses 
calculated by the DEM and the simplified procedure, it has 
been analytically determined that bf = 0.67.

For the second phase of response, giving consideration to 
the effect of the fiber inclination angle on the frictional bond 
behavior, the critical fiber inclination angle corresponding to 
the crack width wcr at the initiation of plastic frictional bond 
behavior can be derived as Eq. (2)

Fig. 4—Probability of fiber inclination angle using sphere 
representation.12

Fig. 5—Comparison of SDEM with DEM for tensile stress 
attained by straight fibers. (Note: 1 MPa = 145 psi; 1 mm 
= 0.0394 in.)
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slip at the peak increases with an increase in the fiber incli-
nation angle. Based on the work of Sujivorakul et al.,27 the 
relationship between fiber slip and tensile force provided by 
the mechanical anchorage is idealized with parabolic and 
linear relationships for the pre- and post-peak behaviors, 
respectively, with consideration of the fiber inclination angle 
effect, as illustrated in Fig. 6.15

Similar to the frictional bond behavior, three phases can 
be considered in the calculation of the fiber tensile stress due 
to mechanical anchorage: pre-peak, post-peak, and full dete-
rioration of the end hook, as illustrated in Fig. 6. When the 
crack width is smaller than seh, all mechanical anchorages 
follow the pre-peak tensile behavior. Therefore, through 
the same procedure presented in Eq. (1), the average tensile 
force due to mechanical anchorage can be calculated with 
consideration given to the random distribution of the fiber 
inclination angle as Eq. (6)
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where wpq,eh is the crack width at the peak tensile force due 
to mechanical anchorage of a fiber with an inclination angle 
of q, calculated as wpq,eh = seh/cos2q; and beh is a coefficient 
accounting for the portion of fibers in which the tensile force 
due to mechanical anchorage does not reach the maximum 
force. In the same manner as with the derivation of bf, it 
has been determined that the value of coefficient beh is 0.76. 
This coefficient prevents the tensile force by mechanical 
anchorage from being overestimated due to the effect of a 
fiber slip on the longer embedded side in the same manner 
as was done for the frictional bond behavior.

When the crack width is larger than seh, the critical fiber 
inclination angle corresponding to the crack width at the 
peak tensile force due to the mechanical anchorage can be 
derived as Eq. (7)

( )1
, cos  for crit eh eh cr cr ehs w w s−q = ≥ (7)

Therefore, as with Eq. (3), when some of the steel fibers 
are in the descending regime shown in Fig. 6 but no steel 
fiber is yet fully deteriorated, the average tensile force devel-
oped from mechanical anchorage can be calculated consid-
ering the random distribution of the fiber inclination angle 
as Eq. (8)
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When the crack width is sufficiently large to cause some 
of the end hooks to fully deteriorate by straightening or 
fracturing, the equation to evaluate the average tensile force 
due to mechanical anchorage becomes too difficult to derive 
exactly through integration. Therefore, a simple parabolic 
relationship between the crack width and the average tensile 
force caused by mechanical anchorage can be employed as 
Eq. (9)
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where Peh,avg,i is the average tensile force due to the mechan-
ical anchorage at wcr = (lf – li)/2 calculated from Eq. (8).

When the crack width is larger than li/2, it can be assumed 
that all mechanical anchorages have been fully exhausted.

In the calculation of the average fiber tensile stress at a 
crack due to the mechanical anchorage effect, the fibers in 
which the mechanical anchorage has pulled out should not 
be considered. Therefore, assuming a uniform distribution over 
the shorter embedment length of fibers at initial cracking, the 
fiber tensile stress at a crack due to the mechanical anchorage 
effect can be calculated as Eq. (10)

,
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s =

π
 (10)

By introducing the maximum bond strength due to 
the mechanical anchorage of a hooked-end fiber teh,max = 
2Peh,max/pdflf and incorporating Eq. (10) with Eq. (6), (8), 
and (9), the tensile stress of an SFRC element due to the 
mechanical anchorage effect can be calculated as Eq. (11)
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Fig. 6—Mechanical anchorage behavior in hooked-end fiber.15
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the tensile stress response of SFRC members, the tensile 
stress due to the tension-softening effect of the concrete 
matrix should be added to that attained by steel fibers. This 
study adopted the following exponential form (Eq. (12))12 for 
the tension-softening effect.

crcw
ct crf f e−=  (12)

where the coefficient c is 15 and 30 for concrete and 
mortar, respectively.

Therefore, the tensile stress of an SFRC member can be 
calculated as Eq. (13)

SFRC f ctf f f= +  (13)

where ff is the tensile stress attained by fibers, equal to fst for 
straight fibers and fst + feh for hooked-end fibers.

VERIFICATION OF SDEM
As shown previously, the tensile stress response of fibers 

calculated by the SDEM shows good agreement with that 
obtained from the DEM. Because the accuracy of the DEM 
was validated in previous studies15,16 through compari-
sons with test results involving straight6,18 and hooked-
end6,17 fibers, it can be concluded that the structural behavior 
of SFRC elements subjected to direct tension can be 
modeled accurately by the SDEM. For further verification, 
plots provided in the Appendix compare the responses deter-
mined by the SDEM to the test results for several specimens. 
In this section, the flexural behavior of SFRC members will 
be discussed.

Analysis procedure for flexural behavior of  
SFRC members

To investigate the modeling capabilities of the SDEM for 
flexural members, four-point bending tests were consid-
ered. In the analysis of the flexural behavior of SFRC speci-
mens, the sectional analysis procedure presented by Oh et 
al.,28 which is useful for modeling the flexural behavior 
of SFRC beams exhibiting a single dominant crack, was 
employed. Because an SFRC beam specimen subjected to 
the four-point loading reaches failure through the formation 
of a single dominant flexural crack, the failure configuration 
can be assumed as Fig. 8. In this figure, the relationship 
between the compressive strain in the pure bending region, 
ec,top, and the center deflection, Dc, can be derived as Eq. (14)

, ,0
2
3

L
c x top c topdx LD = e = e∫  (14)

From the geometric conditions illustrated in Fig. 8, the 
crack opening displacement at the bottom of the beam, 
wcr,bot, is 2qb(h – dc) and qb = Dc/2dc. By incorporating these 
relationships into Eq. (14), the relationship between ec,top and 
wcr,bot can be derived as Eq. (15)

( ), ,
3
2

c
c top cr bot

c

d
w

L h d
e =

−
 (15)

where Keh,i is Keh at wcr = (lf – li)/2.
Finally, the tensile stress attained in SFRC elements with 

hooked-end fibers can be calculated from the superposition 
of the tensile stresses due to the frictional bond behavior 
(Eq. (5)) and the mechanical anchorage effect (Eq. (11)). 
Figure 7 compares the tensile stress attained by hooked-end 
fibers as calculated by the DEM and SDEM. It can be seen 
that the results of the simplified model show good corre-
spondence with the DEM.

Tensile stress of SFRC member
The aforementioned formulations have dealt with the 

tensile stress attained by steel fibers. To realistically evaluate 

Fig. 7—Comparison of SDEM and DEM for tensile stress 
attained by hooked-end fibers. (Note: 1 MPa = 145 psi; 
1 mm = 0.0394 in.)

Fig. 8—Idealized failure mode of SFRC beam.28
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With the relationship presented in Eq. (15), the strain and 
crack width distributions through the section at the crack 
location can be evaluated, as illustrated in Fig. 9(a).

The stress distribution along the uncracked depth can be 
evaluated for the given strain distribution. Linear (Eq. (16a)) 
and parabolic (Eq. (16b)) relationships29 can be employed 
for the post- and pre-peak compressive behavior, respec-
tively, while a linear relationship (Eq. (16c)) can be used for 
the tensile behavior before cracking, as illustrated in Fig. 10.

( )0.151  for 
0.004c c c o c o

o

f f
 

= − e − e e < e′ − e 
(16a)

2

2  for 0c c
c c o c

o o

f f
  e e = − e ≤ e <′  e e   

(16b)

 for 0c c c c crf E= e ≤ e < e (16c)

where eo = 2fc′/Ec and 3300 6900c cE f= +′ (Reference 30) 
because the inclusion of steel fibers has only a minor influ-
ence on the initial elastic modulus in specimens where the 
casting direction is parallel to the crack surface.31 The tensile 
stress within the cracked zone can be evaluated for a given 
crack width distribution using Eq. (5) and (11) through (13).

Consequently, the sectional analysis for a section 
containing a flexural crack can be conducted through an 
iteration procedure, finding the depth of the neutral axis for 
a given crack opening width at the bottom of the section by 
satisfying equilibrium for the horizontal force. Then, the 
sectional moment M can be calculated from the stress distri-
bution through the depth of the section. Finally, the applied 
force and the center deflection can be calculated as Eq. (17) 
and (18)

6MP
L

=  (17)

( ) ,2 4b cr bot
c

L L w
h d

δ = q =
−

 (18)

Comparison with test results of SFRC members
As a verification of the SDEM, both the direct tensile and 

the flexural specimens tested by Susetyo17 will be analyzed. 
In these tests, the cross section of the direct tension test 
specimens was 70 x 100 mm2 (2.8 x 3.9 in.2) and the dimen-
sions of the flexural test specimens were 152 (b) x 152 (h) 
x 456 (L) mm3 (6.0 x 6.0 x 18.0 in.3). The test variables 
included the fiber volumetric ratio, fiber aspect ratio (lf /df), 
and concrete compressive strength. When the SDEM was 
employed to evaluate the tensile stress attained by steel 
fibers, the slips corresponding to the bond strength due to the 
frictional bond behavior, sf, and the maximum force due to 
the mechanical anchorage, seh, were assumed to be 0.01 and 
0.1 mm (0.0004 and 0.004 in.), respectively, as suggested by 
Naaman and Najm.10 The frictional bond strength tf,max and 
the mechanical anchorage strength teh,max were assumed to be 

0.396 cf ′  and 0.429 cf ′  in MPa ( 4.77 cf ′  and 5.17 cf ′  
in psi), respectively, based on previous studies.12,16 Because 
the elastic deformation of the uncracked region of the beam 
is ignored in the assumed failure mode, the analysis was 
conducted starting with a 0.5 mm (0.02 in.) crack opening 
width at the bottom of the cracked section. Note that the 
SFRC beams used for the verification study exhibited a 
single dominant flexural crack. As shown in Fig. 11 and 12, 
the analysis results obtained from the SDEM show good 
agreement with the test results of the SFRC members, not 
only with the direct tensile behavior but also with the flex-
ural behavior.

CONCLUSIONS
In this paper, a simplified version of the DEM was devel-

oped by eliminating the double numerical integration proce-
dure. To enable the simplification, it was assumed that the 
fiber slip on the shorter embedded side is the same as the 
crack width. As a result, the fiber tensile stress at a crack can 
be calculated directly for a given crack width by considering 
the same constitutive models for frictional bond behavior 
and the mechanical anchorage effect, as employed in the 
DEM for the pullout behavior of a single fiber embedded on 
both sides. To prevent an overestimation of the fiber tensile 
stress at a crack that could be caused by neglecting the 

Fig. 9—Crack width, strain, and stress distribution through 
section.

Fig. 10—Material model for SFRC.
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effect of a fiber slip on the longer embedded side, the coef-
ficients bf and beh were introduced for the frictional bond 
behavior and the mechanical anchorage effect, respectively. 
Consequently, the tensile stress attained by fibers in SFRC 
members can be more simply evaluated.

The accuracy of the SDEM was verified through the 
analysis of various test specimens. The tensile stress 
responses of steel fibers calculated by the SDEM showed 
good agreement with those obtained from the DEM. This 
was true regardless of the pullout characteristics of a fiber, 

Fig. 11—Comparison of tensile behavior of SFRC members with hooked-end fibers tested 
by Susetyo.17 (Note: 1 mm = 0.0394 in.) 

Fig. 12—Comparison of flexural behavior of SFRC beams tested by Susetyo.17
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Dc	 =	� compressive deformation at top surface in pure 
bending region

d	 =	 deflection of beam at cracked section
ec	 =	 concrete strain at uncracked depth
ec,top	 =	� compressive strain at top of section in pure bending 

region
eo	 =	 compressive strain at fc′
ex,top	 =	� compressive strain at top of section at distance of x 

from support
q	 =	� fiber inclination angle from axis perpendicular to 

crack surface
qb	 =	 rotation angle of cracked beam
qcrit,f, qcrit,eh	 =	� fiber inclination angles corresponding to pullout 

strengths due to frictional bond behavior and mechan-
ical anchorage effect, respectively

sf,cr,st, sf,cr,eh	 =	� average fiber stresses at crack due to frictional bond 
behavior and mechanical anchorage effect, respectively

teh,max	 =	� pullout strength due to mechanical anchorage of 
hooked-end fiber

tf,avg	 =	 average frictional bond stress
tf,max	 =	 frictional bond strength
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NOTATION
Af	 =	 cross-sectional area of fiber
b, h	 =	� width and height of rectangular cross section, respectively
c	 =	� coefficient for tension-softening effect of concrete 

or mortar
dc	 =	 depth to neural axis from top surface
df	 =	 fiber diameter
Ec	 =	 Young’s modulus of concrete
fc	 =	 concrete stress at uncracked depth
fc′	 =	 concrete compressive strength
fcr	 =	 cracking strength of concrete or mortar matrix
fct	 =	� tensile stress by concrete/mortar tension softening at 

given crack width
ff	 =	 tensile stress attained by steel fibers
fSFRC	 =	 total tensile stresses of SFRC member
fst, feh	 =	� tensile stresses attained by fibers due to frictional bond 

behavior and mechanical anchorage effect, respectively
Keh,i	 =	 Keh at wcr = (lf – li)/2
Kf	 =	� bond modulus, which is slope for elastic behavior in 

bond stress-slip relationship for fiber
Kst, Keh	 =	� factors to represent average pullout stresses of fiber 

due to frictional bond behavior and mechanical 
anchorage of hooked-end fiber, respectively

L	 =	 clear span of beam
lf	 =	 fiber length
li	 =	� distance between mechanical anchorages for hooked-

end fiber
M	 =	 applied moment in pure bending region
P	 =	 applied force in beam
Peh,avg, Peh,max	 =	� average and maximum tensile force due to mechan-

ical anchorage of hooked-end fiber, respectively
Peh,avg,i	 =	 Peh,avg at wcr = (lf – li)/2
seh	 =	� slip at maximum tensile force due to mechanical 

anchorage of fiber with inclination angle of 0 degrees 
to normal of crack surface

sf	 =	� slip at frictional bond strength for fiber with inclina-
tion angle of 0 degrees

Vf	 =	 fiber volumetric ratio
wcr	 =	 crack width
wcr,bot	 =	 flexural crack width at bottom of beam
wpq,eh	 =	� crack width at peak tensile force due to mechanical 

anchorage of fiber with inclination angle of q
wpq,f	 =	� crack width at initiation of plastic frictional bond 

behavior of fiber with inclination angle of q
x	 =	 distance from support
af	 =	 fiber orientation factor
bf, beh	 =	� coefficients to consider effect of fiber slip on longer 

embedment side on frictional behavior and mechan-
ical anchorage effect, respectively
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Appendix 
 
Note: ‘Proposed’ in Figs. A1-A4 represents predictions made with the SDEM developed in this paper.; The 
predictions of SDEM overlap with those of DEM developed by Lee et al.15-16 for almost all specimens.; All 
analytical predictions do not consider member dimension.  
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Fig. A1. Comparison with test results for members with straight fibers tested by Lim et al.6 
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Fig. A2. Comparison with test results for members with straight fibers tested by Petersson18 
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Fig. A3. Comparison with test results for members with end-hooked fibers tested by Lim et al.6 
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Fig. A4. Comparison with test results for members with end-hooked fibers tested by Susetyo17 
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Fig. A4. Comparison with test results for members with end-hooked fibers tested by Susetyo17 (continued) 

 
 


