REINFORCED CONCRETE MEMBRANE
ELEMENT FORMULATIONS

By F. J. Vecchio'

ABSTRACT: Finite-element formulations are presented for the analysis of rein-
forced concrete membrane structures. Cracked reinforced concrete is treated as an
orthotropic material based on a smeared, rotating crack model. Secant-stiffness
moduli are defined for concrete and reinforcement, and these are used in the de-
velopment of linear displacement rectangular and triangular membrane finite ele-
ments. Procedures are discussed by which these elements can then be incorporated
into a nonlinear analysis algorithm. Extensions to the formulations are also de-
scribed that permit the consideration of prestrain effects in the component materials
such as prestressing of the reinforcement, shrinkage of the concrete, or thermal
expansion. The constitutive relations currently utilized are those of the modified
compression field theory, although the element formulations are sufficiently ge-
neric to easily accommodate other constitutive models. A numerical example is
provided to illustrate the simplicity of the calculation procedure and the good con-
vergence characteristics and numerical stability of the formulations. Corroboration
with experimental data is also discussed. Finally, the capabilities and application
potential of the analysis procedure are demonstrated in sample analyses.

INTRODUCTION

Procedures for nonlinear finite element analysis of reinforced concrete
structures have reached a stage in development and acceptance where they
are regularly used in design/analysis applications (e.g., see Fig. 1). Various
development approaches have been taken (e.g., Balakrishnam and Murray
1988; Niwa et al. 1981; Barzegar-Jamshidi and Schnobrich 1986; Stevens
et al. 1987), differing in such aspects as stiffness formulation (tangent stiff-
ness versus secant stiffness), constitutive modeling and element preference.
Regardless of the approach taken, however, it appears that the usefulness of
any particular procedure depends on two key factors. First, the formulation
must incorporate a set of constitutive relations for concrete and reinforce-
ment that realistically model cracked reinforced concrete behavior. Second,
the formulation must be numerically compliant and stable over a wide range
of structural design and loading conditions.

An alternative procedure was recently developed whereby linear elastic
finite element routines could be easily modified to enable nonlinear analysis
of reinforced concrete membrane structures. The procedure is based on an
iterative, secant stiffness formulation, and employs constitutive relations for
concrete and reinforcement based on the modified compression field theory
(Vecchio and Collins 1986). Predictions from the proposed formulation were
compared against experimental results, and excellent accuracy was found in
both strength and deformation response. Details of the procedure formula-
tion, and experimental verification, are documented in a previous paper
(Vecchio 1989).

In this paper, further elaboration is given to the secant stiffness formu-
lations central to the proposed method. Specifically, element stiffness matrix
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FIG. 1. Finite Element Model of Offshore Structure

formulations are derived for rectangular and triangular linear displacement
elements. A solution algorithm is described, and modifications are intro-
duced which enable material prestrains (e.g., reinforcement prestressing,
concrete shrinkage) to be taken into account. The computational simplicity,
numerical stability, and application potential of the formulation are dem-
onstrated through sample analyses.

MATERIAL STIFFNESS FORMULATIONS

In constructing the stiffness matrix [k] for an individual element, a ma-
terial stiffness matrix [D] is required to relate stresses {f} to strains {e}, i.e.

{(FY=IDNel ..o @)

where {f} = [f; f, v,] and {€} = [e, €, 7,]. For a linear elastic isotropic
material, in a plane stress state,

E 1 v 0
D] =—— v 1 0 | )
T=v10 0 (1-w2

To reflect the nonlinear behavior of reinforced concrete, [D] is modified
according to an appropriate set of constitutive laws. Its form also depends
on the type of stiffness moduli used. The formulations that follow assume
a secant stiffness approach.

Assume a global reference system X, Y and an element reference system
X, y as defined in Fig. 2. Further, assume the n reinforcement orientations
within the element are measured in x;, y; axes systems (i = 1, ..., n). The
angles B, ¢, and q; are used to relate directions.

The material stiffness matrix [D] for the element is to be defined with
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FIG. 2. Reference Systems for Reinforced Concrete Element

respect to the global X, Y axes. This is done by first defining a stiffness
matrix for the concrete component, [D.]’, and for each of the reinforcement
components, [D;];. The total stiffness is then determined by combining the
contributions from each of the components, using appropriate transforma-
tions to take into account the anisotropy of the materials.

Cracked reinforced concrete can be treated as an orthotropic material with
its principal axes 1,2 corresponding to the direction of the principal average
tensile strain and principal average compressive strain (i.e., crack direction),
respectively (see Fig. 2). Further, after cracking, Poisson’s effect can be
considered negligible. Thus, the concrete material stiffness matrix [D.]’,
evaluated with respect to the principal 1,2 axes system, is

E, 0 0
DY =] 0 E.q 0 [.ouiiiiii i 3)
0 0 G.

where E,,, E.,, and G, are secant moduli. At a particular stress/strain state,
the secant moduli are evaluated as follows:

E,= e 4)
Ecl
E,= Ja 5)
€.
and
= - Ecl 'ECZ (6)
T L R B,

where €., = concrete average principal tensile strain; €, = concrete average
principal compressive strain; f,; = concrete average tensile stress in the 1-
direction; and f,, = concrete average compressive stress in the 2-direction.

For each reinforcement component, a corresponding matrix [D]; is eval-
uated as

piE.\"i 00
D=1 0 0 O ..o (7N
0 00

where p; = reinforcement ratio; and E, = secant modulus. Again, the mod-
ulus is determined for a particular stress/strain state using the relationship
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FIG. 3. Constitutive Relations for Concrete and Reinforcement: (a) Concrete; (b)
Reinforcement

where €; = average strain in the reinforcement; and f,; = average stress.

Transformations must be applied to convert the component stiffnesses to
the global system. Thus, the total material stiffness matrix [D] is evaluated
as

[D] = (D 4 D, IDyli et e ©)
i=1
where
D = (T IDIITL] - oo oo e e e (10)
and
D = [TIDIT,Li oo e e e (11)
The transformation matrix [T] is given by
cos*s sin®{s cos ¢ sin
[T] = sinys cos?s —cosysiny |............. (12)
—2cosysiny 2 cosPsiny (cos’Py — sin’)
where, for the concrete component,
U=+ B =180°+ B = 0, oot (13)
and for the reinforcement components
P = 0 B e e (14)

Note that [T] differs for each of the components. The resulting matrix [D]
is a full, symmetric matrix, dependent on the orientation of the element in
the global space.

To model nonlinear material response, the constitutive relations contained
in the modified compression field theory (MCFT) (Vecchio and Collins 1986)
(see Fig. 3) have been adopted. Thus, for concrete in compression, the re-
lations used to model strain softening effects are

2
€, €.
f;‘Z :fc2max [2(_2> - ('_2) :l .................................... (15)
€ €9
where
—f:
omax T T = = e 16
Sezman 0.34¢,, fe (16)
0.8 —
€
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For concrete in tension, prior to cracking, a linear relation is used, i.e.,

ﬂl = Ec'ecla 0= €rl = € e e (17)
where
2f.
E o= (18)
€
e =% ....................................................... (19)
£ =033 VILMMPA) e (20)

After cracking, concrete in tension is made to reflect tension stiffening ef-
fects through the following relation

Ser
1+\/M ............................................

The MCFT assumes a bilinear stress-strain relation for reinforcement, i.e.,

P = (22)

However, Eq. 22 can be modified to reflect strain hardening effects, or cur-
vilinear response more appropriate for prestressing reinforcement.

Note while the MCFT relations have been used in the analyses to follow,
the stiffness formulations are such that any realistic set of stress-strain re-
lations can be easily implemented.

Ja =

ELEMENT STIFFNESS FORMULATIONS

Having determined an appropriate material stiffness [D], the stiffness ma-
trix [k] for a particular element can be evaluated using standard procedures
(e.g., Yang 1986). The computations involved can be summarized as

(k] = [[BYTIDIUBIAV . . .. oo e e (23)

where the shape matrix [B] is dependent on the assumed element displace-
ment functions.

Formulations were derived in closed-form for the rectangular and the tri-
angular linear displacement elements shown in Fig. 4. The corresponding
element stiffness matrix coefficients are given in Appendix I. It should be
noted that, because of the full nature of the material stiffness matrix [D],
the coefficients derived differ from those commonly reported for similar iso-

Thickness t Thickness t
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FIG. 4. Geometry of Linear Displacement Elements: (a) Rectangular Element; (b)
Triangular Element
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tropic elements. Note too that the element stiffness matrices [k] remain sym-
metrical.

The procedure outlined above can be applied in formulating higher order
elements, although resort to numerical integration techniques may be re-
quired.

ACCOUNTING FOR PRESTRAINS

The secant stiffness approach to element formulation readily permits the
inclusion of prestrain effects in the component materials of an element. This
enables analyses to account for prestressing in the reinforcement, shrinkage
or expansion of the concrete, thermal expansion of either the concrete or
reinforcement, or other types of strain offset effects.

Consider for example a uniaxial reinforced concrete element as shown in
Fig. 5. The element may be subjected to a concrete shrinkage [e.g., Fig.
5(a)], prestressing in the reinforcement [e.g., Fig. 5(b)], or any combina-
tion of prestrains in the component materials. In any case, the initial free
prestrains in the concrete, €7, and in the reinforcement, €;, are known. Un-
der an externally applied load F, the element exhibits a total measurable
strain e.

In determining secant stiffness moduli for the component materials of the
element, the strain values to be used in Egs. 4, 5, and 8 are the strains due
to stress (see Fig. 5). Thus, for the concrete

€ T € = € e 24)
and for the reinforcement

€y = € T €y i e e e 25)
The prestrains are evaluated as

€ = Qe AT — € & €co oo v et e (26)
and

€ =0, AT — A€, + € oo 27

FIG. 5. Secant Moduli for Element with Prestrains: (a) with Concrete Shrinkage
Prestrain; (b) with Prestressed Reinforcement
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where o, = coefficient of thermal expansion of the concrete; AT = change
in temperature; €, = concrete shrinkage strain; €, = concrete expansion
strain accounting for alkali reactivity or any other volume prestrain effect;
a, = coefficient of thermal expansion of reinforcement steel, Ae, = pre-
stressing strain; and €, accounts for any other prestrain effect in the rein-
forcement. Offset strains arising from previous loading conditions (e.g., strain
offset in the reinforcement due to prior yielding), from cyclic loading effects,
or from creep could be accounted for in a similar manner.
A prestrain pseudo-force F* can be defined as

F*¥=A-(fo+paf)=A (B €+ py-Eq €)ool (28)
Thus, the total force considered to be acting on the element is
F' = F + FF (29)

where F = externally applied load. The axial stiffness of the element k is

. A
k = [Ecl + Pst 'Esl] 'z ........................................... (30)

where A = element cross-sectional area; and L = length. The elongation of
the member is

= il 31
P LR LR
and thus the strain is determined as
AL F' F+A-(E,-€+pyE;-€
€= —=—-= Ee P Bae) (32)

L kL A ' (Ecl + psl : Esl)

Note, however, that the total strain (€) and the secant moduli (E..,E,) are
interdependent and so an iterative solution is required.

This pseudo-force approach to accounting for prestrains can be generalized
for two-dimensional membrane elements. Prestrains must be defined for the
concrete and each of the reinforcement components of an element, thus

ox €
(€] =] € | = €|  cvvreiiii (33)
Lﬁgxy L_0
and
[ €2, €2 (1 + cos 2a;)/2
[€)i=] € | = € (1 —cos2a)/2[....covviiiveiiii .. (34)
€5y | €, - sin 2q

From the prestrains, free joint displacements are determined as functions of
the element geometry, i.c.,

[79) = JIECIAA oo oo 35)
[P0 = JIENdA .o (36)
Given the free displacements, the prestrain joint forces can be evaluated as

[F¥] = P21 + D TRMIPZli « oo (37)

i=1

where [k.] and [k,]; are the element stiffness matrices evaluated separately
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for each of the components using the formulations described previously. The
prestrain forces are added to the externally applied joint loads to determine
the total force vector [F']. A routine solution procedure is used thereafter
to determine joint displacements, and hence final element strains. Having
calculated the element strains [€], the element stresses can be found from

[f]1 = [D](le] — [e]) + 2 [DJle] — [€1) -« oo (38)

i=1

IMPLEMENTATION

Nonlinear analyses of reinforced concrete membranes can be achieved by
incorporating the element formulations described above into an iterative lin-
ear elastic analysis procedure. Through each iteration, the material stiffness
[D] and element stiffness [k] matrices are progressively refined until con-
vergence is achieved. A flow chart summarizing the solution procedure is
given in Fig. 6.

In regards to the computation algorithm, the following should be noted.

1. As the stiffness matrices change through each iteration, so too will the
prestrain force vector [F*]. Hence, the total force vector [F'] must be recalcu-
lated through each iteration (Step 9).

2. If no element prestrains are present, then the component stiffness matrices

0| Input structure, material 9| Determine nodal force vector
properties (F/} = {F} + {F*}
¥ |
1] Input external joint loads 10! Determine global stitfness matrix
{F) (K} = (K],
f|etori=1tom= 11| Invert global stiffness matrix
¢ foriziton K] = inv([K])
2| Determine element component ¥
prestrains H —
e J; [e2 1, 12| Determine joint displacements
cr s '{ {r} = (K] {F")
Pg ~'E§timate element secant S . for jz=1tom
st|ﬂrless iacto_rs for i=11to n
E.iEqi Eg E ] —
I © 13| Determine element strains
: : [e] = tn ({rh
4| Determine material component S H
stiffness matrices : . |
D] =TI (D1 [T) © 14| Determine element stresses
D= (TR, (7] || | W)
‘ : + Z[DSL ([e] - [esol.)
5| Determine material composite i - ¥
stiffness matrix i ;15 Determlne new element secant
[D]= [D.] + Y [D, ], '"%d,u!'—/ Y
‘ : c1 Ecz » Esi
6| Determine element stiffness
matrix .
Moduti conm
kJ: K, k= k] + S0k,], | e
i N ' Ec?'Ecz'E5|_Esn
7| Determine element component ]
prestrain displacements
[r2); Ir )
¥ '
8| Determine prestrain joint loads B
)= [k ] Ire) + Sk, I, S 17} Store /Output resuits

n = no. of reinforcement directions
m = no. of elements

FIG. 6. Solution Procedure for Nonlinear Analysis
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[k.] and [k,]; need not be evaluated individually; the total stiffness [k] can be
determined directly from the composite material stiffness [D]. If prestrains are
present, [k] = [k] + Z[k,]; where the component stiffnesses [k.] and [k,]; are
determined from the stiffness formulations (Appendix I) using the material stiff-
nesses [D.] and [D,];, respectively.

3. Given element strains as determined in Step 13, the strains and stresses in
the component materials are determined from compatibility and stress-strain re-
lations. These are then used to determine new values for the secant stiffness
moduli (Step 16) using the formulations previously discussed. If the newly com-
puted moduli are not equal to those assumed in Step 3, a further iteration of the
solution is required. The newly computed moduli can be used to propagate the
solution.

SAMPLE CALCULATIONS

Consider panel specimen PB21, shown in Fig. 7(a), tested by Bhide and
Collins (1987). The materials properties of the element are given as

fe=21.8 MPa f = 1.54 MPa € = —0.0018

E. = 24,200 MPa v =0.30 E; = 200,000 MPa
p,=0.02195 p,=0 f, =402 MPa

An analysis is to be conducted for the uniform stress condition
f. = 3.10 MPa 5L=0 = 1.0 MPa

The finite element model used, comprised of a single rectangular element,
is shown in Fig. 7(b). (Note that this specimen, reinforced in one direction
only, represents a difficult problem from a computational viewpoint. Ignor-
ing tension stiffening effects, as most formulations do, will result in an in-
ability of the panel to sustain loads beyond cracking.)

In implementing the solution procedure summarized in Fig. 6, the strains
corresponding to the given loads are found to be

[e] = [0.706 0.707 1.507] x 1073

Some pertinent values computed during the various iterations of the solution
process are charted in Table 1. A detailed set of calculations corresponding
to the 11th iteration is given in Appendix II. Note that the first cycle began
with the assumption of linear isotropic behavior (i.e., as in Eq. 2) in defining

Uy

2.1P 4.1P

~2.1P

(@) 800 —— (b)

FIG. 7. Panel Specimen PB21: (a) Specimen Properties; (b) Finite Element Model
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the [D] matrix. Each successive iteration was based on the strains calculated
in the previous cycle.

CONVERGENCE CHARACTERISTICS

The method, as currently formulated, utilizes the strains determined from
the previous iteration to redefine element stiffnesses and, hence, propagate
the analysis. Typically, 20 to 30 iterations are required to converge to a final
solution. This number has been found to be relatively insensitive to structure
size (i.e., number of elements) or element properties (e.g., reinforcement
patterns), provided that the structure’s ultimate load capacity has not been
exceeded. (Localized post-ultimate behavior is accounted for without diffi-
culty). In numerous analyses conducted to-date, the numerical stability of
the procedure has been remarkably good.

Shown in Fig. 8 are the convergence patterns exhibited by the [D]-matrix
coefficients and the element strains in the sample solution described above.
The stiffness coefficients initially undergo marked variation as behavior changes
from uncracked isotropic to cracked orthotropic response. Thereafter, the
stiffness coefficients rapidly converge to stable values. The strain quantities
also rapidly converge, generally in a monotonic manner. Note that conver-
gence to within 1% of final values, for this relatively difficult case (i.e.,
panel reinforced in one direction only), is obtained after about 20 iterations.

Convergence is equally good if the initial (or intermediate) strain values
are greater than the final results. However, in the sample problem, where
the structure consists of one element only, convergence will not be assured
if the initial strains represent a post-ultimate condition. In the more general
case of multi-element structures, local post-ultimate strain conditions will
cause a relieving of load to neighboring elements. This will act to reduce
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FIG. 8. Convergence Characteristics of PB21 Analysis: (a) Stiffness Coeffi-
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the local strains, thus increasing stiffness and restoring equilibrium. Nu-
merical stability under these conditions has also been found to be very good.

EXPERIMENTAL CORROBORATION

The formulations described can represent completely any constitutive model
which relates principal stresses to principal strains in the concrete, and axial
stresses to axial strains in the reinforcement. Inaccuracies which may arise,
apart from improper mesh size in consideration of the simplicity of the ele-
ments, will relate entirely to the appropriateness of the constitutive models
used.

The stress-strain formulations currently employed are those of the MCFT.
They were derived from an extensive series of panel tests (Vecchio and Col-
lins 1986) and appear to capture in a simple way the nonlinear behavior of
concrete. In predicting the results of 19 panels involving primarily concrete
shear/crushing failures, under a variety of reinforcement and loading con-
ditions, the ratio of experimental to theoretical ultimate load had a mean
value of 1.002 and a coefficient of variation of 10.0%. Deformation re-
sponses were predicted equally well. Other researchers (e.g., Ang 1985; Mau
and Hsu 1987) report similar success in the use of these relations.
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Experimental corroboration with reinforced concrete specimens not in-
volving prestrain effects is discussed elsewhere (Vecchio 1989). Experi-
mental data relating to membrane specimens with prestrains could not be
found in the literature. However, Marti and Meyboom (1987) describe a
preliminary investigation in which panel specimens with partial prestressing
were tested. The panels were subjected to pure membrane shear relative to
the orthogonal reinforcement, with specimen properties and loading details
as shown in Fig. 9(a). The observed response of each panel, together with
the theoretical behavior based on a one-element analysis, is given in Fig.
9(b). It can be seen that both the ultimate strength and the deformation of
the panels were accurately predicted.

SAMPLE ANALYSES

The capabilities and limitations of the procedure presented are reflected
in the two sample analyses discussed below.

Consider Panel W2 tested by Cervenka (1970), which has long served as
a benchmark test for calibrating finite element formulations. The 760 mm
deep, 75 mm thick panel is simply supported over a 1,720 mm span, and
is subjected to a concentrated load at the midspan. Horizontal reinforcement
in the lower 150 mm region is at 1.83%; above, the horizontal reinforcement
ratio is at 0.92%. Vertical reinforcement is provided at 0.92%. Other per-
tinent details and material properties are given in Fig. 10(a). An analysis

2P
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TP Steel ratio, P, = 0.0092 TP
T SECTION
§ m : l m—— .Iﬂ\ — ﬂ
_L U ;5 U \ul Crack directi

rack direction
[P F— 760%‘1—‘—— 760——-!-7—‘ Long. steel yeilding
100 100 100
fc': 26.8 MPa fy = 353 MPa (c)

(a) E.= 20000 MPa Eg = 190000 MPa

120 120

100 100
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< 80 g 80—
o o
o -
< 60 2 60
~ 40 - a0 / W2 Theoretical

Experimental | ———- Concrete shrinkage
o 000 T Theoretical 20} e Reinforcement
prestressed
0 [ SR R 0 [ R R
0 5 10 15 -2.5 0 25 5.0 75 10.0 125

(b) DEFLECTION (mm) (d) DEFLECTION (mm)

FIG. 10. Analysis of Cervenka Panel W2: (a) Specimen Details; (b) Load-Deflec-
tion Response; (¢) Conditions at P = 110 kN; and (d) Response under Hypothet-
ical Conditions
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was conducted to determine the theoretical load-deformation response of the
panel. The computed response is compared to the observed response in Fig.
10(b), based on an analysis using the element mesh shown in Fig. 10(c).
The correlation is generally very good, with pre-cracking stiffness, post-
cracking stiffness, post-yield stiffness, and ultimate load capacity well-pre-
dicted. The experimental response exhibited a slightly higher ultimate ca-
pacity, with a distinct peak and drop-off, likely as a result of strain hardening
effects in the reinforcement. Strain hardening was not considered in the the-
oretical analysis, although the ability to do so exists. Also, it is seen that
the theoretical analysis slightly underpredicts post-cracking deformations. This
may be a result of the tension stiffening model (i.e., Eq. 21) being too stiff,
or due to shrinkage stresses affecting the observed response. Predicted de-
flections, cracking patterns, and reinforcement yielding at a load level near
failure are shown in Fig. 10(c).

Two additional analyses were conducted on Panel W2, assuming hypo-
thetical conditions. In the first, the concrete in the 75 mm-thick regions of
the panel was assumed to have undergone a shrinkage strain of 0.4 X 1077;
concrete in the thicker regions was given no shrinkage strain. This resulted
in the panel being precracked to some extent. The second hypothetical con-
dition had the horizontal reinforcement in the bottom regions of the panel
(i.e., where p = 0.0183) prestressed with a strain Ae, = 1.5 X 107", but
with the yield strength unaltered. The load-deflection response for each con-
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z ) Nonlinear | 49/ TT7777C Nonlinear
a - Linear Linear
0 | ] ! L 0 | | | !
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(c) CONCRETE EXPANSION (x10°3) (d) CONCRETE EXPANSION (x10°%)

FIG. 11. Analysis of Dam Section Subjected to Concrete Expansion: (a) Struc-
ture Details; (b) Conditions at ¢, = 2.0 x 10~%; (c) Horizontal Deflection at Point
B; and (d) Thrust at Section A
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dition was computed and is shown in Fig. 10(d). As expected, concrete
shrinkage resulted in a significant decrease in the stiffness of the panel, whereas
prestressing increased the initial stiffness. Prestressing also imparted a small
initial upward deflection on the panel; shrinkage caused no initial deflection.
Neither condition affected the ultimate load capacity of the panel. At inter-
mediate load levels, however, deflections differ in excess of 200%.

An analysis was also conducted of a dam structure in which observed
damage was postulated to be the result of concrete expansion due to alkali
reactivity. A portion of the structure, representing a 100 mm slice through
a penstock section, is shown in Fig. 11(a). Nominal reinforcement of 0.1%
is provided in both the horizontal and vertical directions. Analyses were
conducted for concrete expansion strains ranging up to 2.5 x 107°. The
deformation and cracking patterns in the structure corresponding to an ex-
pansion of 2.0 X 107 are shown in Fig. 11(b). Note that the structure is
experiencing a flexural failure, rather than one involving brittle shear as had
been anticipated. The horizontal deflection of the structure, and the com-
pressive thrust developed at the rightmost section, are compared to values
computed from linearly elastic analyses in Fig. 11(c) and (d). The deflec-
tions are seen to follow essentially a linear progression. The forces devel-
oped, however, show exceeding nonlinear behavior and are considerably less
than those computed from a linear analysis. A gradual softening of the force
response is seen as cracking propagates at the top and bottom interfaces. As
the expansion strain exceeds 2.2 X 107°, yielding of the vertical reinforce-
ment results in a downturn in thrust.

CONCLUSIONS

Cracked reinforced concrete can effectively be treated as an orthotropic
material, with secant stiffness moduli defined for the directions parallel and
perpendicular to the crack direction. The material, as such, is characterized
by a full, symmetric stiffness matrix [D], combining the contributions from
concrete and reinforcement. The stiffness coefficients can be calculated ac-
cording to any realistic constitutive model. Finite elements can thus be for-
mulated, incorporating advanced material behavior models, by using stan-
dard procedures. This leads to a simple, but effective, means of performing
nonlinear analyses of concrete membranes.

The secant stiffness formulations presented are simple and generic in con-
cept. Finite elements formulated accordingly retain a general form that per-
mit refinements or changes in the material models without difficulty. Fur-
ther, the formulations retain a form that can be accommodated in conventional
linear elastic procedures (e.g., the element stiffness matrix remains sym-
metrical, unlike some tangent stiffness formulations). Prestrain effects in the
material components of an element can also be accommodated, enabling the
consideration of such factors as prestressed reinforcement, concrete shrink-
age, and thermal effects. Finally, the iterative calculations involved have
demonstrated excellent stability and convergence characteristics.

Although specific formulations were presented for linear displacement ele-
ments only, the method can be used in developing higher order elements.
Work is currently progressing in this direction.
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APPENDIX |. STIFFNESs MATRIX COEFFICIENTS

For the rectangular linear displacement element shown in Fig. 4(a), the
stiffness matrix coefficients corresponding to {r} = [u, u, u; us v, v, v v4)
are

ky, = k33 = 4b°t,D,, + 6abtyD,; + 4a*t,Dss

kiy = ksy = —4b*1,D,, + 2a*t,D3

ki3 = —2b°t,Dy, — 6abtyD,; — 2a’t,Ds3

kis = kp3 = 26D, — 4a’tyDs

kis = ky; = 3abt,D, + 4b*,D 5 + 4a’t,Dy; + 3abtyD;,
ki¢ = ksg = 3abtyD,, — 4b*,D 5 + 2a*tyDy; — 3abtyDss
ki; = kys = —3abtoD,, — 2b*t,D\3 — 2a*t,D,; — 3abtyDa;
kis = kss = —3abtoD,, + 2b*t,D,3 — 4d’t,D,; + 3abtyDs;
4b*tyD,, — 6abtyD; + 4a*tyDs;

kys = —2b*,D,, + 6abtyD,; — 2d°t,Ds;

kys = kg = —3abtyD,, — 4b*tyDy5 + 2a*t,D,; + 3abtyDs
kys = kag = —3abtyDy, + 4b*tyD,; + 4a’t,D,; — 3abtyDss
ky; = kys = 3abtoD,, + 2b%*,D 3 — 4a’t,Dy; — 3abtyDs;
ki = kas = 3abtoDy, — 2b*,D 13 — 2a’t,Dy; + 3abtyDs,
kss = ki = 4a’t,Dy, + 6abtyDyy + 4b*1,Das

kss = kzg = 2a’tD;; — 4b’1oD

ks; = —2a’tyDy, — 6abtyDy; — 2b°t,Ds;

kss = ke; = —4d’toD,, + 2b%t,Ds;

kes = ksg = 4a’tyD,; — 6abtyDy; + 4b’t,Das

kes = —2a’tuD,, + 6abtyD,; — 2b*t,Dss

_ t

" (12ab)

For the triangular linear displacement element shown in Fig. 4(b), the
stiffness matrix coefficients corresponding to {r} = [u; u, us v, v, vs] are

ki = biteD\, + 2a,by2eD5 + aitoDs;

kiz = bib)tyDyy + (a1by + apb))toD 3 + aaztoDs3
kiz = bibstyDyy + (a\bs + asb)tD 3 + ajasteDs3
ks = aibitoD,y + biteD\5 + aiteDyy + a\bytoDss

kis = axb 1Dy + bibatoD 3 + ajaytoDy3 + arbytoDss
kic = asbitoDy; + bibstoD 3 + ayasteDys + bibsteDis
ky = byteDy, + 2a,bst0D\3 + asteDs;s

ka3 = bybstyDy + (azbs + a3by)teD 5 + azastoDs;

S
N
I
k
S
I

ki, = kit

ij jis
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ko = abytoDy; + bibytyD 3 + a1aztoDos + azbitDs;
kas = abrtoD 1y + b3toD 1y + astoDyy + azbytoDss
kye = asbytoDy; + bibstoD 3 + ayastoDos + axbstDs;
kys = bitoD\, + 2asbstoD 3 + aiteDs;
kss = abstoDy; + bibstyD 3 + aastoDys + azbitDs;
kss = axbstoD 1y + bybstoD 3 + axastoDo3 + asbytoDis
kss = asbsteDy; + bitoD 5 + a3toDys + asbsteDiss
ks = aiteDy + 2a,bitDyy + bitDss
kis = a\axtoDyy + (a1by + ayb)toDys + bibytD3s
kss = a\astoDyy + (a1by + asb))toDy3 + bibstyDs
kss = a5toDy + 2a,byteDyy + b3teDss
kse = axastoDyy + (b3 + asby)toDys + bybstyDss
kes = astoDy, + 2azbstoDyy + bitoDs;

1 (azb, - a,b2)2
ki=ky to=-t|——

2 \ab; — asb,
a, =x;3 — X a = x| — X3 a; = xX; — X

by =y, =y b, =y; =y by =y, =y

APPENDIX Il. SAMPLE CALCULATIONS

Step 0

Given
fi=21.8MPa f,=154MPa E, = 24,200 MPa
e = —0.0018 v =0.30 E, = 200,000 MPa
p, = 0.02195 p, =0 f,x = 402 MPa

a = 890 mm b = 890 mm t =70 mm
Step 1

Given f, = 3.10 MPa, f, = 0, v,, = 1.0 MPa
[F]=1[H, Hy Hy V5 V,]
= [65.41 127.71 —65.41 31.15 —-31.15] (kN)

Step 2
No prestrains, [€]] = [e7], = [0 0 O]

Step 3
Given (from previous iteration)

[€] = [0.669 0.560 1.310] x 10?

a. Determine principal strain conditions (using general strain compatibility).

€, =1272%x1073 €, = —0.0427 x 10°°
6, = 47.38° €, = 0.669 x 1073

b. Determine principal stresses in concrete/reinforcement
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from Eq. 21 f.,, = 1.024 MPa
from Eq. 15 f, = —0.925 MPa
from Eq. 22 f;; = 133.9 MPa

c. Evaluate secant moduli

fromEq. 4 E. =f./€, = 805 MPa

fromEq. 5 E., = f,/€, = 21,650 MPa
fromEq. 6 G.=E.E,/(E. +E,) =776 MPa
fromEq. 8 E, = f,/e, = 200,000 MPa

Step 4
a. Determine concrete material stiffness matrix, [D.]:

(21650 0 0
fromEq.3 [DJ = 0 805 0 | (MPa)
0 0 776

fromEq. 13 ¥ = 132.62°

[0.4585  0.5415 —0.4983
fromEq. 12 [T,] =] 0.5415 0.4585  0.4983
0.9966 —0.9966 —0.0830

5,558 4,805 —4,794
from Eq. 10 [D.] = [T.J'[D.J'IT.] = 4,805 7,287 —5,593 | (MPa)
-4,794 —5,593 5,580

b. Determine reinforcement material stiffness matrices, [D,)/; 1 < i < n, n
= 1:

4390 0 O

fromEq. 7 [D,]; = 0 0 0] MPa)
0 0 0

fromEq. 14 ¢ =0°

1 00O
fromEq. 12 [T}, =10 1 O

0 0 1

4,390

from Eq. 11 [D,), = [THIDHIT.), = (MPa)

o OO
o OO

0
0

Step 5
Determine composite material stiffness matrix [D] from Eq. 9:

D] = D] + D, D),

i=1

9,948 4,805 —4,794 Dy, Dy, Dy

= 4,805 7,287 —=5,593 | (MPa) = | D,y Dy Dy

—4,794 —5,593 5,580 D31 D32 D33
Step 6

Formulate element stiffness matrix (using coefficients in Appendix III):
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1946  -167.0 -13.4 —14.1 -60.6 330 —60.6 88.27]
530.1 —14.1 —3489 60.2 -424.1 61.0 3029
1946 —167.0 -60.6 882 —60.6 33.0
_ 530.1  61.0 3029  60.2 -424.1
th) = 1045 -452 456 -104.9 |(KN/mm)
symmetric 496.0 —-1049 -3459
104.5 —45.2
L 496.0_]
Step 7
Determine element prestrain displacements:
No prestrains, [r2] = [r2] = (0]
Step 8
Determine prestrain joint loads:
no prestrains, [F*1=0
Step 9
Determine nodal force vector, [F']:
[F']=[F]+ [F*] =[65.41 127.71 —65.41 31.15 -31.15](kN)

Step 10

Assemble structure stiffness matrix, eliminating freedoms corresponding

to fixed joints (i.e., u,, v;, v,):

530.1 —14.1 -348.9 61.0 302.9
194.6 —-167.0 —60.6 33.0
K] = 530.1 60.2 —424.1 |(kN/mm)
symmetric 104.5 —-45.2
496.0
Step 11
Invert stiffness matrix:
[8.449 9.397 12.945 —4.842 4.842 |
26.804 27.091 1.278 15.757
K] ! = 35.828 —3.564 20.599 | x 1073 (mm/kN)
15.738 1.259
symmetric 15.738
Step 12
Compute joint displacements:
{r} = [KT'F")
8.449 9.397 12.945 —4.842 4.842 65.41 0.604
26.804 27.091 1.278 15.757 || 127.71 1.815
= 35.828 —3.564 20.599 |{—65.41 | x 107> =| 1.210 | (mm)
15.738 1.259 31.15 0.531
15.738 ||—31.15 0.531
thus 4, =0 w,=0604mm u;,=1.815mm wu, = 1.210 mm
1,=0 v, = vy = 0.531mm v, = 0.53] mm
Step 13
Determine element strains:
+ p— —
¢ = 22— = 0679 x 10°
2a
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U3+ vy — U — U
6=~ ———=059%x 107

u3+u4—u1—u2+vz+v3—v1—v

* =1.360 X 107°
2b 2a

Note strains changed from starting values in Step 1.

Yry =

Step 14
Check element stresses:

{f} = DA(e} — {eh) + ZIDJe} — L))

9,948 4,805 —4,794 || 0.000679 3.10
= 4,805 7,287 —5,593 || 0.000596 | = 0 | (MPa)
-4,794 —5,593 5,580 |} 0.001360 1.00
Agreement with imposed load condition.
Step 15

Recompute secant moduli (as per Step 3):

;' =771 MPa  El, = 21,558 MPa
G! = 745 MPa E!, = 200,000 MPa

Step 16
Moduli not converged, go to Step 4.
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AprPeNDIX IV. NOTATION
The following symbols are used in this paper:

[B]
(D]
(D]
(D]

I

Il

element strain function matrix;

composite material stiffness matrix;

concrete material stiffness matrix;

reinforcement material stiffness matrix;

modulus of elasticity of linear isotropic material,

modulus of elasticity of concrete (initial tangent stiffness);
secant modulus of concrete in principal tensile strain direction;
secant modulus of concrete in principal compressive strain direc-
tion;

secant modulus of reinforcement in i direction;

structure nodal force matrix, applied forces;

structure nodal force matrix, prestrain forces;

structure nodal force matrix, total forces;

element stress matrix;

compressive strength of concrete cylinder;

average principal tensile stress in concrete;

average principal compressive stress in concrete;

concrete cracking stress;

average stress in i direction reinforcement;

element stress in x direction;

element stress in y direction;

yield stress of i direction reinforcement;

secant shear modulus of concrete;

structure stiffness matrix;

element stiffness matrix;

structure nodal displacement matrix;

transformation matrix;

shear stress on element, relative to x, y axes;

orientation of reinforcement relative to element x, y axes;
orientation of element x, y axes relative to global X, Y axes;
element strain matrix;

initial free strain in concrete;

average principal tensile strain in concrete;

average principal compressive strain in concrete;

strain in concrete at cracking;

strain in concrete cylinder at peak stress f, (negative quantity);
initial free strain in reinforcement;

strain in i direction reinforcement;

strain in x direction;

strain in y direction;

shear strain relative to x, y axes;

angle of inclination of principal stresses/strains in concrete;
steel reinforcement ratio in i-direction,;

orientation of crack direction relative to element x, y axes; and
rotation angle in transformation matrix.
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