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Abstract

In this study, the application of two nonlinear finite element method (FEM) procedures and a simplified axial-shear-flexure interaction approach

are examined for displacement-based analysis of four reinforced concrete columns, previously tested. The two alternative finite element methods

are described based on differing crack modeling approaches: smeared rotating cracks, implemented by the VecTor2 program, and smeared fixed

cracks, implemented by the UC-win/WCOMD program. The Axial-Shear-Flexure Interaction approach, a method also based on smeared rotating

cracks, is simplified, discussed and compared with the FEM analyses. Experimental and analytical results are compared for pre- and post-peak

responses up to axial collapse of the columns. Both FEM methods resulted in satisfactory pre-peak predictions. Adequate post-peak simulations,

until near complete loss of capacity, were achievable by the rotating crack method (VecTor2), especially for those columns exhibiting a shear-

critical response. The simplified Axial-Shear-Flexure Interaction approach provided response envelope curves for the specimens comparable with

the cyclic results obtained by the two FEM approaches.

c© 2008 Elsevier Ltd. All rights reserved.
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0. Introduction

In the past four decades, several analytical approaches

and finite element models has been developed to simulate

the behavior of reinforced concrete structures subjected to

various loading conditions. Until recently, structural design

approaches were mainly based on load and capacity evaluation

concepts. However, reconnaissance and experimental studies

on structural performance conclusively showed that a

comprehensive design cannot be achieved by a capacity-based

methodology. Hence, performance-based or displacement-

based evaluation approaches emerged into the field of

design engineering and practice. One of the well-known

and widely-used displacement-based analytical approaches for

reinforced concrete structures is the smeared crack and average

stress–strain concept. This methodology can be subdivided

into fixed smeared crack [1] and rotating smeared crack [2]

approaches. In the former method, once a crack is generated,

∗ Corresponding author. Fax: +1 416 929 7436.
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its direction is considered geometrically fixed. However, in the

latter method, crack directions rotate together with the principal

stress and strain vectors. The main hypothesis of the smeared

rotating crack approach is that both principal stress and strain

vectors are assumed coincident in the process of analysis. In the

fixed crack concept, no restriction is imposed on the concrete

stress and strain fields to be coincident.

Here, an attempt is made to assess the reliability of

the above two methods for displacement-based analysis of

reinforced concrete columns. The authors selected two well-

known available programs for this study: VecTor2, developed

at University of Toronto based on the smeared rotating crack

approach, and WCOMD, developed at University of Tokyo

based on the fixed smeared crack method. As an alternative

macro-model method, the Axial-Shear-Flexure Interaction

(ASFI) method [3,9], developed based on the smeared rotating

crack approach, is also examined in this study for further

simplification and implementation.

For experimental corroboration, four reinforced concrete

column specimens with different failure modes of shear, shear-

compression, and flexure, loaded under constant axial load and
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Notations

B width of the section

Cd a factor, defined in terms of concrete tensile and

compression strains

Cs a factor that accounts for the influence of slippage

on the cracks.

d effective depth of the section

d f flexure depth of the section

ds shear depth of the section.

f ′
c concrete compression strength

fcx concrete stress in x-direction

fcy concrete stress in y-direction

fsx average reinforcement stress in x-direction

fsy average reinforcement stress in y-direction

f ′
t concrete tensile strength

H depth of the section

�12 the distance between two adjacent flexural

sections

Lin distance between the flexure section and the

inflection point

m a factor in terms of the reinforcement ratio and

the rebar diameter

M moment at the flexure section

P applied axial load

V applied lateral load

vcxy, vcyx concrete shear stress relative to x and y axes

β compression softening factor

εx average strain in x direction, and for columns, it

is the total axial strain

εy average strain in y direction

εxa axial strains due to axial mechanism

εxs axial strains due to shear mechanism

εx f axial strains due to flexural mechanism

εsx strain of the reinforcement parallel to the x
direction

εsy strain of the reinforcement parallel to y direction

εcx concrete strain in x direction

εcy concrete strain in y direction

εxc1 and εxc2 the centroidal strains of two adjacent

flexural sections

{ε}c0 uncracked concrete strain vector for the WCOMD

{ε}ci strain due to crack in the i direction for the

WCOMD

γ total lateral drift of a column between two flexure

sections

γs shear strain

γ f flexural drift ratio

ρsx and ρsy reinforcement ratios in the x and y directions

σo applied axial stress

σx total stress in x direction

σy total stress in y direction

σx f axial stress in the axial-flexure element

σxs axial stress in the axial-shear model

σy and σz stresses in the axes perpendicular to the axial

axis of a column, or clamping stresses

{σ }rc , {σ }c , and {σ }r stress vectors in the reinforced

concrete, cracked concrete and reinforcement for

the WCOMD

τ resultant shear stress

τ f shear stress in the axial-flexure element

τs shear stress in the axial-shear model

τxy shear stress

cyclic lateral load [4] are modelled to examine and verify the

analytical results.

1. VecTor2 and the smeared rotating crack concept

VecTor2 is a program based on the Disturbed Stress Field

Model [10–12], a refinement of the Modified Compression

Field Theory [5] for nonlinear static and dynamic finite element

analysis of reinforced concrete membrane structures. It is

supported by the FormWorks program as a pre-processor for

structural configuration, and by the Augustus program as a post-

processor for visualizing the results of VecTor2. Here a brief

description of the Modified Compression Field Theory (MCFT)

is presented. Additional detail can be found in [10–12].

1.1. MCFT stress–strain model

The MCFT is based on formulations of principal average

strains in an element leading to the calculation of principal

average stresses in concrete through realistic nonlinear

constitutive relationships. Transforming average concrete

principal stresses to global coordinate axes and adding in

average steel bar stresses gives the total average stresses in

the element. There are two checks in the calculation process

relating to crack zones. The first is to ensure that tension in

concrete can be transferred across the crack. The second is to

ensure that shear stress on the surface of the crack dose not

exceed the maximum shear resistance provided by aggregate

interlock. A reinforced concrete element, in the Modified

Compression Field Theory, can be illustrated as the free body

diagram of the membrane element depicted in Fig. 1.

1.2. Compatibility and equilibrium conditions

Assuming a perfect bond, compatibility relationships in the

MCFT are expressed by the following equations based on

average strains in concrete and reinforcement:

εx = εcx = εsx (1)

εy = εcy = εsy (2)

where εx , εy are average strains in x and y directions, shown

in Fig. 2, εsx , εsy are strains of the reinforcement parallel

with the x and y directions respectively, and εcx , εcy are

concrete strains in x and y directions: [Note: in the general

form of the MCFT, any number of reinforcement components

can exist, and can be oriented in arbitrary directions.] For an in-

plane shear element, shown in Fig. 3, equilibrium conditions
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Fig. 1. A reinforced concrete membrane element subject to in-plane stresses.

Fig. 2. Average strains in concrete and reinforcements.

Fig. 3. A reinforced concrete in-plane shear element showing average stresses.

are satisfied by balancing the resultants of applied normal

stresses (σx , σy , τxy) by resultants of the average concrete

stresses ( fcx , fcy , vcxy) and reinforcement stresses ( fsx , fsy).

Equilibrium of moments requires that applied shear stresses,

τxy , are entirely resisted by average shear stresses in the

concrete, vcxy , (ignoring the effect of reinforcement dowel

action). Considering the free body diagram of the membrane

element, in Fig. 3, equilibrium relationships for average stresses

can be summarized as follows:

σx = fcx + ρx . fsx

σy = fcy + ρy . fsy

τxy = vcxy

(3)

where, σx = total stress in x direction, σy = total stress

in y direction, τxy = τyx = shear stress, fcx = concrete

stress in x-direction, fcy = concrete stress in y-direction,

vcxy = vcyx = concrete shear stress relative to x and y
axes, fsx = average reinforcement stress in x-direction, fsy =
average reinforcement stress in y-direction, ρsx and ρsy are the

reinforcement ratios in x and y directions, respectively.

1.3. Constitutive laws

The constitutive laws for cracked reinforced concrete were

derived from experimental studies on panel elements subjected

Fig. 4. A constitutive law for concrete in principal compression direction.

to in-plane stress conditions using the Panel Element Tester

at the University of Toronto [5,14]. The test results were

analyzed to develop constitutive models for cracked concrete in

compression and tension. It was found that cracking of concrete

resulted in degradation of strength, stiffness and ductility of

concrete in compression. Fig. 4 illustrates the constitutive law

for concrete in the principal compression direction, as applied

in modified compression field theory.

f p = β f ′
c

εp = βε′
c

β = 1

1 + CsCd
� 1.0

(4)

where β is compression softening factor, Cd is a factor defined

in terms of concrete tensile and compression strains, and Cs
accounts for the influence of slippage on the cracks.

The concrete tension stiffening constitutive relationship

applied in Modified Compression Field Theory is depicted

in Fig. 5. The concrete tensile stress–strain relationship is

linear prior to cracking of the concrete. After cracking, average

concrete tensile stress is declining based on Eq. (5).

ft = f ′
t

1 + √
ctε1

(5)

where, f ′
t = 0.33

√
f ′
c (MPa) and ct = 2.2m where m is a factor

in terms of the reinforcement ratio and the rebar diameter [13].

The VecTor2 default hysteresis model for concrete is the

Nonlinear Plastic Offsets model proposed by Vecchio; for

reinforcements, the Seckin Model (Bauschinger) is used [15].

2. WCOMD and smeared fixed crack concept

Program UC-win/WCOMD is an analytical tool for path-

dependent two-dimensional static and dynamic nonlinear

analysis of reinforced concrete structures (FORUM8 2003),
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Fig. 5. Average stress–strain relationship for cracked concrete in tension.

based on a smeared reinforcement and smeared fixed crack

approach with average strain-stress relationships for in-plane

shear elements [6]. The program has two components: an

analysis solver program and an interface program. The solver

program was developed in the Concrete Laboratory, University

of Tokyo, and deals primarily with two-dimensional nonlinear

dynamic/static analysis of reinforced concrete structures. The

interface program is a Windows based program developed by

FORUM8 for mesh editing and configuration. In this study,

the advanced mode of the program was selected to achieve the

maximum possible damage states estimated by the program.

In the fixed crack model, when the principal stress reaches

the concrete tensile strength, a crack develops perpendicular

to the principal tensile stress direction. However, the crack

orientation does not change during successive loading. The

early fixed crack method had numerical problems caused by

singularity of the material stiffness matrix. In addition, the

crack pattern predicted by such an analysis lacks correlation

with that observed in experiments [7]. Later, in order to

overcome this problem, a cracked shear modulus was developed

for the method to eliminate most of the numerical difficulties

and numerical instability and to improve the accuracy of

predicted results. Here, the current version of a fixed crack

approach is briefly described.

2.1. Equilibrium and compatibility conditions

In the fixed crack method, a reinforced concrete element

with multiple cracks with different orientations is formulated

by applying nonlinear mechanisms for cracked concrete

and elastic mechanisms for uncracked concrete. Equilibrium

and compatibility conditions are satisfied simultaneously for

cracked and uncracked concrete which lead to a secant stiffness

matrix in the stress–strain field [6].

In this method, superposition of concrete average stress and

reinforcement average stress gives the total average stress for a

reinforced concrete element [8].

{σ }rc = {σ }c + {σ }r (6)

where {σ }rc, {σ }c, and {σ }r are stresses in the reinforced

concrete, cracked concrete and reinforcement, respectively. The

total average strain of a reinforced concrete element is obtained

from the summation of strains caused by all cracks in the

element and the uncracked concrete as

{ε} = {ε}c0 + {ε}c1 + {ε}c2 + · · · + {ε}cn (7)

where {ε}c0 is the uncracked concrete strain and {ε}ci is the

strain due to crack in the i direction.

2.2. Active crack approach

The active crack method is a simplified but reasonably

accurate method that allows the explicit derivation of the

stiffness matrix without iterative computation [6]. This method

was developed based on the fact that not all cracks in a multi-

cracked element play a dominant role in element nonlinearity

at the same time. In other words, a few cracks, called active

cracks, are considered as dominant cracks and control the

overall nonlinearity of the entire element. As a result, a much

more simplified computational process is implemented for

nonlinear analysis. This is one of the basic hypotheses of the

WCOMD program.

2.3. Constitutive laws

Concrete before cracking is treated by the elasto-

plastic fracture (EPF) model. The model idealizes uncracked

concrete by combining plasticity, for residual deformation,

and continuum fracture, for loss of elastic strain energy

absorption. In the model, several microelements are connected

in parallel. Each microelement is composed of an elastic

spring, to represent the internal stress-bearing mechanism and

energy absorption capacity, and a slider, for residual plastic

deformation, connected in a serial chain. An idealization of the

FPF model is depicted in Fig. 6.

For a cracked concrete element, anisotropic behaviour is

modeled in the direction of the crack. The same uncracked

concrete EPF model is applied for cracked concrete in

compression. However, for cracked concrete, the compressive

normal stress parallel with the crack direction is assumed

uniaxial. Furthermore, compression strength degradation due to

the damage caused by tensile strain is considered by applying

a strength reduction factor. Concrete in tension follows the

constitutive law of the EPF model until cracking. After

the concrete cracks, a tension stiffening model, shown in

Fig. 7, controls concrete tensile behaviour perpendicular to the

cracks. A coupled compression-tension path-dependent model

is used to compute the normal stress in concrete subjected

to an alternate tension-compression loading path [6]. For

reinforcement, a multi-surface plasticity model, proposed by

Fukuura and Maekawa [6], is implemented to represent the

nonlinear stress–strain hysteretic response. The shear stress and

strain at the crack plane normal to the maximum principal stress

direction are assumed to be zero at the moment of cracking.

However, as loading proceeds, the principal axes of stress and

strain rotate. Hence, the existing crack is no longer normal

to the new principal direction. Therefore, in the fixed crack

approach, a shear transfer model is applied for the cracked

concrete based on the contact density theory [6].

3. Axial-shear-flexure interaction approach

The Axial-Shear-Flexure Interaction (ASFI) method [3] is a

macro-model-based approach for displacement-based analysis
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Fig. 6. The EPF elasto-plastic fracture model.

Fig. 7. Average stress–strain relationship for cracked concrete in tension.

of reinforced concrete columns and beams, comprising the

three mechanisms of axial, shear and flexure. The axial-flexural

mechanism is modeled by two adjacent flexure sections, and the

axial-shear mechanism is modeled by a shear model between

the two flexure sections. The total lateral drift of a column

(γ ) between two flexure sections is considered equal to the

summation of the shear strain γs and the flexural drift ratio γ f ,

between the two sections. Furthermore, the total axial strain

of the column between the two sections, εx , is obtained from

the summation of axial strains due to axial εxa , shear εxs and

flexural εx f mechanisms.

γ = γs + γ f

εx = εxs + εx f + εxa . (8)

Flexure section analysis gives the axial strain caused by axial

and flexural mechanisms, εxc = εxa f + εx f . On the other hand

the axial-shear model gives axial strain due to axial and shear

mechanisms, εs = εxas + εxs . Therefore, to obtain εx in Eq.

(8), it is necessary to extract εx f from the section analysis, or to

determine εxs from the shear model.

Assuming a linear strain relationship between two flexural

sections of a column, as shown in Fig. 8, axial strain due to

flexure between the two sections, εx f , is determined based on

the relative centroidal deformation between the two sections by

means of integration as Eq. (9).

εx f = 1

�12

∫ �12

0

(εxc1 − εxc2)
x

�12
dx = 0.5(εxc1 − εxc2) (9)

where, εxc1 and εxc2 are the centroidal strains of two adjacent

flexural sections and �12 is the distance between the two

sections. In the simplified ASFI method with one flexure

section, a nonlinear centroidal strain distribution can be applied

between the end section and inflection point.

Compatibility of axial deformations is satisfied when axial

deformations due to axial mechanisms in the axial-shear

Fig. 8. Average centroidal strain due to flexure to be contributed in the in-plane

shear element.

element, εxas , and the axial-flexure element, εxa f , become

identical.

εxa = εxas = εxa f . (10)

For equilibrium, axial stress in the axial-flexure element,

σx f , should be equal to axial stress in the axial-shear model,

σxs . In addition, equilibrium of shear stress in the axial-flexure

element, τ f , and shear stress in the axial-shear model, τs , is

satisfied simultaneously through the analysis.

σx f = σxs = σo

τ f = τs = τ (11)

where σo is the applied axial stress determined by Eq. (12), and

τ is the resultant shear stress. Shear stress in the axial-flexure

mechanism, τ f , and shear stress in the axial-shear mechanism,

τs , are calculated by Eqs. (13) and (14), respectively.

σo = P
B H

(12)

τ f = M
Bd f Lin

(13)

τs = V
Bds

(14)

where P = applied axial load, H = depth of the section, B =
width of the section, M = moment at the flexure section, Lin =
distance between the flexure section and the inflection point,

d f = flexure depth of the section, d = effective depth of the

section, V = the applied lateral load, and ds = shear depth of

the section.
Stresses in the directions perpendicular to the longitudinal

axis of the column, the clamping stresses σy and σz , are ignored

due to equilibrium between confinement pressure and hoop

stresses.

σy = σz = 0. (15)

Fig. 9 shows the simplified ASFI method, for a reinforced

concrete column, including equilibrium and compatibility
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Table 1

Material property of the specimens

Speciemn Type B (mm) H (mm) 2Lin (mm) Sh (mm) ρg (%) ρw (%) fyx (MPa) fyy (MPa) f ′
c (MPa) P (kN)

No. 12 DC 300 300 900 150 2.26 0.14 415 410 28 540

No. 14 DC 300 300 900 50 2.26 0.43 415 410 26 540

No. 15 DC 300 300 900 50 2.26 0.85 415 410 26 540

No. 16 DC 300 300 600 50 1.8 0.43 415 410 27 540

DC = double curvature, or with two fixed ends, B = width of the section, H = Depth of the section, Lin = length of the column from the inflection point to the

end section, Sh = hoop spacing, ρg = longitudinal reinforcement ratio, ρw = transverse reinforcement ratio, fyx = longitudinal reinforcement yield stress, fyy =
transverse reinforcement yield stress, f ′

c = concrete compression strength, and P = axial load.

Fig. 9. Axial-shear-flexure interactions in ASFI method.

Fig. 10. Axial and shear deformations of a column considered by ASFI

method.

conditions. Total axial deformation of the column equals the

axial strain developed by axial, shear, flexure and pullout

mechanisms, and the total drift ratio equals the summation of

shear, flexure and pullout deformations, as shown in Fig. 10.

Constitutive laws for concrete and steel bars are considered to

be the same as those in the MCFT. In addition, a pullout model

is applied to consider the effect of pullout for tensile steel bars

at the end-section of the columns [6].

The ASFI method was basically developed for displacement-

based analysis of reinforced concrete columns and beams.

Further study and development are required to enhance and

assess the model for other types of elements such as shear

walls [9].

4. Details of column specimens

Four column specimens, scaled to 1/3, representing columns

located in the mid-frame of the first floor of a typical Japanese

building with moderate height, tested previously [4], are

selected for this study. Column specimens were loaded under

constant axial load and static cyclic unidirectional lateral load.

Details and material properties of the column specimens are

given in Table 1. The load set-up for a specimen, with height

of 90 cm, is illustrated in Fig. 11.

All the specimens were subjected to a constant axial load

of 540 kN, applied by two vertical jacks at the two sides of

each column. At each loading step, axial loads from the two

vertical jacks, and the corresponding vertical deformations,

were controlled to ensure a uniform axial load on the columns

section and to avoid any rotation at the two ends. The

specimen’s cyclic lateral loadings were controlled based on

displacement. For lateral loading of specimens No. 12, No.

14, and No. 15, cyclic peak drift ratios (i.e. the column

top horizontal displacement divided by the height of the

column) ±8/800, ±15/800, ±28/800 were imposed and then

monotonically increasing load was applied until axial failure.

For specimen No. 16, peak drift ratios were ±8/800, ±32/800,

followed by monotonically increasing load until complete loss

of load capacity.

Column specimens No. 12, No. 14, and No. 15 were

designed with almost identical characteristics except for

transverse reinforcement ratios, to simulate different failure

modes: shear, shear-flexure and flexure failures. However,

column specimen No. 16 was shorter, compared to the other

three columns, to simulate a short column at the location of

wing-walls.

Based on experimental results, specimen No. 12, with the

lowest transverse reinforcement ratios, failed in shear with a

clear dominant shear crack on its face. A flexure response was

exhibited by specimen No. 15 up to about 3.5% drift ratio,

followed by shear failure [9]. Column No. 14 first failed in

bond-flexure and then, with spreading shear and bond cracks

on its face, failed in shear. Finally, column No. 16, the shortest

specimen, failed in shear-compression just before reaching its

flexure load capacity. Fig. 12 illustrates crack patterns and

failures for specimens No. 12 to No. 15 soon after shear failure,

in the post-peak stage.

5. Nonlinear analysis of the column specimens

Here, the analytical and modeling processes and results for

column specimens are presented, as derived from the VecTor2

and WCOMD programs and the ASFI approach.

5.1. Implementation of VecTor2

The VecTor2 solver is equipped with a graphics-based

preprocessor (FormWorks) to generate the finite element mesh.

It includes facilities for data visualization and input, bandwidth
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Fig. 11. Loading apparatus and details of test setup in the experimental study.

Fig. 12. Crack patterns and failure modes of the reinforced concrete column specimens.

reduction and automatic mesh generation. Fig. 13-a shows the

editor of FormWorks with a mesh generated for specimen

No. 16.

The test setup for columns was simulated by considering

two nearly rigid top and bottom stubs. Loading positions

and support conditions for specimen No. 16 are illustrated

in Fig. 13-b. Cover concrete was configured as unconfined

concrete elements and core concrete was modeled as confined

concrete elements. The dark (red) elements in the bottom and

top stubs, shown in Fig. 13-b, were modeled as highly rigid to

provide a zone without rotation.

Nonlinear analyses were implemented via the VecTor2

program for the four reinforced concrete column specimens

subjected to applied loads. Fig. 14 illustrates analytical and

experimental results for the specimens. Furthermore, the

ultimate load capacity, ultimate deformation capacity, pre-

peak stiffness and post-peak stiffness, illustrated in Fig. 15,

were derived from the results by means of average values

and outcomes were examined and compared in Table 2. Both

Fig. 14 and Table 2 clearly indicate very good pre-peak

correlations between the test and analysis for the columns.

Strong correlations in post-peak responses were also achieved

for specimens No. 12 and No. 16.

5.2. Modeling of reinforced concrete columns by WCOMD

Fig. 16 shows the editor of WCOMD and the mesh for one

of the reinforced concrete column specimens generated for the

analysis. Two joint elements were introduced in the top and

bottom sections of each column to model the pullout effects

of the specimen.

The concrete core was separated into two layers, in a

direction perpendicular to the column plane. Then an in-plane

shear element and overlapping plane element were applied for
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(a) Editor of FormWorks. (b) Loading positions and supports conditions for specimen

No. 16.

Fig. 13. A reinforced concrete column configured in Form Works of VecTor2 program. (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)

Table 2

Comparison of experimental and analytical results for specimen No. 12

Specimen Results Test VecTor2 WCOMD ASFI

Analysis Analysis/Test Analysis Analysis/Test Analysis Analysis/Test

No. 12 UL (kN) 256 252 0.98 267 1.04 262 1.02

UD (mm) 4.5 4.0 0.89 6.0 1.33 4.5 1.00

E (N/mm) 79 000 85 000 1.08 66 000 0.84 79 500 1.01

E p (N/mm) 18 000 17 500 0.97 – – 18 500 1.03

No. 14 UL (kN) 300 303 1.01 297 0.99 305 1.02

UD (mm) 9 13 1.44a 8 0.89 12.4 1.38a

E (N/mm) 67 000 66 500 0.99 66 500 0.99 67 000 1.00

E p (N/mm) 4 000 – – – – 4 100 1.02

No. 15 UL (kN) 339 346 1.02 340 1.00 341 1.01

UD (mm) 31.5 33 1.05 32 1.02 30 0.95

E (N/mm) 59 000 58 500 0.99 55 000 0.93 58 500 0.99

E p (N/mm) 2 400 – – – – 2 450 1.02

No. 16 UL (kN) 348 360 1.03 344 0.99 348 1.00

UD (mm) 6 5.7 0.95 6.2 1.03 5.9 0.98

E (N/mm) 110 000 120 000 1.09 110 000 1.00 107 000 0.97

E p (N/mm) 12 000 11 500 0.96 – – 13 000 1.08

a Bond failure was observed for No. 14 during the test however bond behavior was not modeled in the analysis. UL: Ave. ultimate load, UD: Ave. ultimate drift,

E : Ave. pre-peak stiffness, E p : Ave. post-peak stiffness (see Fig. 18).

the two layers with different reinforcement ratios corresponding

to the position of longitudinal and transverse reinforcement.

The same support conditions and loads, as shown in Fig. 13-

b, were employed for reinforced concrete columns modeled by

the WCOMD interface software.

The analytical process is implemented by the main solver

which is provided in the same package with the pre- and post-

processors but executed in individual windows. Fig. 17 and

Table 2 show analytical results by the WCOMD and the test

results for the column specimens, which indicate consistent

correlations for the pre-peak responses. The program limited

the post-peak analysis implementation based on the default

failure criteria and could not estimate the post-peak response

up to the complete loss of load capacity.

As an alternative, an analysis was undertaken for specimen

No. 15 subjected to a monotonic loading. In general, it is

expected that a column will have less deformation capacity

under cyclic load than when it is subjected to a monotonic

load. However, interestingly, analysis by WCOMD shows a

shear failure for No. 15 under monotonic loading and a flexure

response under cyclic loading, as illustrated in Fig. 17. Based on

an oral communications with Maekawa, it is believed that this is

due to the concept of the fixed crack approach and it is expected

that the same response, shear failure, might be achieved for
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Fig. 14. Analytical results by VecTor2 program comparing to the experimental outcomes.

Fig. 15. Illustration of terms and envelope curve for experimental results.

the specimen under a monotonic loading. However, no test

data were available for the monotonic loading to verify this

interesting result.

5.3. Analysis by ASFI method

Applying the simplified ASFI method, and by considering

the symmetric conditions of the specimens, half of the columns’

heights, from inflection point to one end, were modeled as

shown in Fig. 9. A fiber model discretization was utilized

for the end section as an axial-flexure model; conversely, a

shear model was employed, as an axial-shear element, from

the inflection point to the end section. For each column, a

pushover analysis was implemented and a lateral load-drift ratio

response was estimated. Results of the analysis by the ASFI

method as well as experimental data are provided in Fig. 18

and Table 2 wherein the results of envelope curves for the FEM

methods, obtained by VecTor2 and WCOMD (or UC-win) are

also compared. In both Fig. 18 and Table 2, results of ASFI

method show exceptionally good agreement with experimental

values for both pre-peak and post-peak responses.

6. Discussion

As a result of this study, the first question that may come

to mind is: which one of these two methods, fixed crack

or rotating crack, is more reliable for displacement-based

analysis of reinforced concrete structures. A study on the latest

developments on both VecTor2 and WCOMD programs will

reveal that both approaches are implementing a hybrid method

considering both fixed and rotating crack methodologies, which

result in a reliable approach. In case of VecTor2, although

the primary concept of the program is based on the rotating

crack method and the Modified Compression Field Theory,

an enhanced version of the program is based on a hybrid

formulation combining elements of a fully rotating crack model

and a fixed crack model; namely, the Disturbed Stress Field

Model. Conversely, WCOMD originally was developed based

on the fixed crack method; however, the last version of the

program was modified based on an active crack approach.

This conveys that both methods are based on a combination of

rotating crack and fixed crack methods, however each method

places heavier emphasis on its original methodology. Based

on this study, results from both programs showed reasonable

agreement with experimental data for pre-peak responses.

Limited for the post-peak response based on failure criteria,

WCOMD program provided post-peak results up to an average

of 80% of the specimens’ shear capacity. However, VecTor2

program gave strong results for post-peak response of the two

column specimens critical in shear; No. 12, and No. 16, up

to complete loss of shear capacity. WCOMD considers the

pullout effect, due to slip of steel bars under tension stress

at the section adjacent to the section with larger thickness,

which results in a proper stiffness for the specimens. However,

for specimen No. 12, results showed less stiffness compared

to test data, as indicated in Table 2, possibly overestimating

pullout deformation. Although, relatively similar response

envelope curves were attained by VecTor2 for column No. 15

under lateral cyclic load and under lateral monotonic load,

completely different responses were obtained by WCOMD for

the specimen under the two loading conditions. This might be

due to the conceptual fixed crack model used in the program. A

larger number of elements is required to utilize a fine mesh on a
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Fig. 16. A reinforced concrete column configured in WCOMD.

Fig. 17. Analytical results by WCOMD program comparing to the experimental outcomes.

structural domain by VecTor2 comparing to that by WCOMD.

This is because rectangular elements with higher integration

points are applied in WCOMD. This would reduce the time

needed for an analysis by WCOMD program.

In the analysis by VecTor2, local failure of specimen No.

15 after ultimate drift prevented the program from attaining

post-peak response. An attempt was made to estimate post-peak

response of column No. 15 by VecTor2 program. To prevent

premature failure in analysis, before complete loss of load

capacity, domain of the column was utilized with larger size

elements, comparing to the fine mesh applied for the specimen

in Section 5.1. Although a higher load capacity for pre-peak

response was obtained, a strong correlation was achieved for

the post-peak response. This result suggests that by applying

a proper numerical method and appropriate element size, post-

peak response might be achieved by the FEM method also for

columns with dominant flexure behavior.

Comparing to the results obtained by the FEM methods,

exceptionally good correlation was achieved by the ASFI

method for both pre- and post-peak response. The Modified

Compression Field Theory was found to be a powerful method

for solving shear problems, when applied in the ASFI method to

model the shear behavior. On the other hand, section analysis is

a well accepted method for flexure problems, also employed in

the ASFI method. Hence, coupling and interacting the two shear

and flexure methods resulted in a proper analytical tool for

nonlinear analysis of reinforced concrete columns, estimating

the global behavior of the elements. The ASFI method was
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Fig. 18. Comparisons of experimental results and analytical outcomes of load-drift envelope curves for the specimens by ASFI, UC-win/WCOMD and VecTor2

programs.

easily implemented in Excel and few iterations were needed to

achieve a proper convergence at each loading steps. Avoiding

local failure modes, which were observed in the FEM analysis

for columns No. 14 and No. 15, might be the main reason for the

ASFI method being able to achieve strong post-peak response

correlations with the test data for the column specimens.

7. Conclusions and recommendations

Overall, both FEM programs, VecTor2 and WCOMD,

are powerful analytical tools in practice for the analysis of

reinforced concrete elements up to their ultimate load state. In

particular, VecTor2 software is highly reliable for displacement-

based analysis of shear-critical problems, providing reliable

results even for post-peak responses.

It is strongly expected that by applying a proper numerical

solution technique in VecTor2, post-peak response can be

attained for elements with dominant flexural behavior such as

column No. 15.

Further experimental study is required to verify analytical

results by WCOMD program for column No. 15 showing a

shear failure under monotonic loading and a flexure response

under cyclic loading. A clue might be found on the effects

of crack opening and closure in the concept of fixed crack

approach.

Analytical study by the Axial-Shear-Flexure method indi-

cates that not only do the individual components of shear and

flexure response play important roles in estimating reliable ana-

lytical results, but also their interactions with axial deformation

have a significant effect on the response. Further simplification

is recommended in ASFI method for application in practice for

the purpose of performance-based design of reinforced concrete

columns and beams as well as application to shear walls.

Practically, applicability of an FEM method is limited for

nonlinear analysis of a large structure, such as a building.

This is because FEM methods would require excessively large

amounts of memory and fastidious computation for such a

structure. In this case, macroscopic models, such as the ASFI

method, are proper analytical tools for nonlinear analysis of

large building structures in practice.
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