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A procedure is described whereby linear elastic finite element rou-
tines can be modified to enable nonlinear analysis of reinforced con-
crete membrane structures. The proposed procedure is based on an
iterative, secant stiffness formulation and employs constitutive rela-
tions for concrete and reinforcement based on the modified compres-
sion field theory. Predictions from the proposed procedure are com-
pared against experimental results, as well as against more complex
formulations, and excellent accuracy is found. Example analyses and
potential applications of the nonlinear procedure are also described.
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In 1981, an iaternational competition was organized
to compare analytical methods for predicting the re-
sponse of reinforced concrete elements subjected to
general two-dimensional stress states.' Four panels
tested in a University of Toronto research program
were presented, with the panels’ construction, material
properties, and loading conditions being simple and
well defined. Entrants were asked to predict the panels’
ultimate strength and load-deformation response and to
describe briefly the basis for their analysis. A total of
27 entries from 13 countries were received, with a
strong representation from the leading researchers in
the field. Many of the predictions offered were based
on analyses conducted using complex nonlinear finite
element procedures. Fig. 1 gives an indication of the
wide scatter in predictions received. Clearly, the ability
to predict response, using finite element procedures or
otherwise, was not very good. This collective deficiency
was due primarily to a generally poor state of the art in
constitutive modeling of cracked reinforced concrete.

The 4 competition panels were part of a series of 30
tested in an extensive research program, from which an
analytical model was developed for predicting the re-
sponse of reinforced concrete membrane elements. The
model, known as the modified compression field the-
ory, has been shown to reflect accurately the nonlinear
behavior of reinforced concrete** and now forms the
basis for Canadian code* procedures for design of rein-
forced concrete in shear.
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Recent efforts at the University of Toronto and else-
where have been made towards formulating improved
finite element procedures for the analysis of more com-
plex structures. Several®’ finite element codes have been
developed that incorporate the formulations of the
modified compression field theory (MCFT), the most
comprehensive of which is program FIERCM devel-
oped by Stevens et al.® Of course, other nonlinear finite
element procedures have been developed that are not
based on MCFT formulations (e.g., Reference 8
through 10) and these too have met with various de-
grees of success. With respect to all ongoing develop-
mental work, however, two general observations can be
made. First, there is a tendency to favor tangent stiff-
ness formulations as opposed to secant stiffness for-
mulations; discussions of their relative merits can be
found in the literature, e.g., Reference 11. Secondly, it
is generally perceived that formulations using higher
power elements (i.e., multinoded elements with higher
order displacement expansions) are preferable to those
using simple elements in greater numbers.

In this paper, an alternative nonlinear finite element
procedure is presented that incorporates the constitu-
tive relations of the MCFT. Contrary to current pref-
erences, however, it is based on a secant stiffness for-
mulation and currently utilizes only the lowest order fi-
nite elements. The procedure is adaptable to existing
linear elastic algorithms and thus enables an easy con-
version to nonlinear analysis capability.

RESEARCH SIGNIFICANCE
This paper shows that the response of reinforced
concrete membrane structures can be predicted accu-
rately using nonlinear finite element methods, provided
they embody realistic constitutive relations for the
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component materials. Further, it is shown that such
analyses can be performed by simple modification of
existing linear elastic routines, and that modifications
based on a secant stiffness formulation using simple
low-powered elements are viable alternatives to more
complex formulations.

STRESS-STRAIN RELATIONSHIPS
The finite element procedure herein is made to re-
flect the nonlinear behavior of reinforced concrete by
adopting the formulations of the MCFT. The MCFT,
described in Reference 2, is an analytical model for
reinforced concrete membranes based on a smeared
crack approach in which the cracked concrete is treated
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as a new material with unique stress-strain characteris-
tics. Equilibrium, compatibility, and stress-strain rela-
tionships are formulated in terms of average stresses
and average strains, but local stress conditions at crack
locations are also given consideration. The stress-strain
formulations of the MCFT have been applied to a va-
riety of concrete structural analysis problems (e.g.,
References 12 through 14) and typically have yielded
excellent agreement with experimental results.
Consider an orthogonally reinforced concrete mem-
brane element as shown in Fig. 2(a). The element con-
tains smeared reinforcement in the longitudinal (x) and
transverse (y) directions, with the amounts given by the
reinforcement ratios p, and p, and the yield strengths by
f,, and f,,, respectively. The concrete is characterized by
a cylinder compressive strength f/, a strain at peak
stress ¢,, and a tensile cracking stress f.. Loads acting
on the element’s edge planes are assumed to consist of
the uniform axial stresses f, and f, and the uniform
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Fig. 2—Average stress and strain conditions defined for
a membrane element
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shear stress v,,. Deformation of the element is assumed
to occur such that the edges remain straight and paral-
lel.

Under the acting loads, an equilibrium condition is
attained resulting in a unique strain condition defined
by the two normal strains ¢, and ¢, and the shear strain
v, From a Mohr’s circle construction [Fig. 2(b)], the
principal tensile strain ¢,, the principal compressive
strain €,, and the inclination of the strain field (i.e.,
crack direction) 8, can be found

6 =Y +€)+ Yalle —€) )
+ vLl”

=Yl +e) = Yalle, - +vi" (2

6. = Y5 tan"! [y, /(e, — €)] A3)

The stresses in the concrete and reinforcement are
determined from the strains according to MCFT con-
stitutive relations (Fig. 3). The principal compressive
stress in the concrete f,,, is

f02=ﬁ2max.l12<_:}_)—<z_z>} (4)

- f
0.8 — 0.34 ¢,/¢,

where

.chmax = (5 )

28

This formulation reflects the strain softening effect
prevalent in cracked concrete in compression.

For concrete in tension, prior to cracking, a linear
stress-strain relation is used. Thus, the principal tensile
stress f,, is

.fcl = Ec t €y, € s €cr (6)

where E. is the initial tangent modulus of elasticity of
the concrete (E. = 2 f!/¢,), and ¢, is the cracking strain.
After cracking, the following relation is suggested to
reflect tension stiffening effects

Ja = fo./(1+4200.¢) (7N

To insure that the concrete average tensile stress can be
transmitted across cracks, f,, is subject to the following
upper limit

.fcl < DO (f;x - fsx) * Sinzoc (8)
+ p, (f,, — f,)) - cos?.

where f,, and f,, are reinforcement stresses.
Stresses in the reinforcement are determined using
elastic-plastic stress-strain relations. Thus

Jo=E e < fu ®

Jo = Ece, < S,y (10)

where E; is the elastic modulus of the reinforcement
steel. Eq. (9) and (10) can be modified to allow for
strain hardening or prestressing, if necessary.

The principal average stresses in the concrete and
Mohr’s circle approach [see Fig. 2(c)] are then used to
determine the concrete stresses in the x- and y-direc-
tions f,, and f,, respectively, and the concrete normal
shear stress v,,,

Jo=Y2fa+ S - V2 (fu— S 1)

- cos 26.
Jo="2(fa+ 1)+ V2 (fa — fo) cos 20, (12)
Vo = Y2 (fu — f2) -+ sin 26, (13)
The stresses in the concrete and in the reinforcement

should be in equilibrium with the known loads f,, f,,
and v,, acting on the element. That is

Jo ¥ 0 S =L (14)
Jo t o, Sy =1 (15)

and
Voy = Vy (16)

In a MCFT element analysis, if Eq. (14) through (16)
are not satisfied, then the assumed strain state €,, ¢€,, v,,
is considered incorrect and must be revised. In finite
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element analysis, these local equilibrium checks are not
performed directly.

Given compatible stress and strain fields, secant
moduli can be defined for the concrete and reinforce-
ment (shown in Fig. 3). Values required in the finite
element formulations to come include the following

E. = f./¢ (17)
E, = fi/e (18)
E, = f./e (19)
E, = f/¢ (20)

where E,, and E,, relate to the stress-strain behavior of
the concrete in the principal directions, and E, and E,,
relate to the reinforcement in the two orthogonal direc-
tions.

FINITE ELEMENT PROCEDURE

With minor modifications, existing linear elastic fi-
nite element routines can be made to incorporate the
stress-strain formulations previously presented and thus
can be converted to nonlinear analysis capability. De-
velopment of linear elastic procedures is well docu-
mented in the literature, with References 11, 15, and 16
having been particularly useful. The emphasis here will
be on the modifications required.

In constructing an element stiffness matrix [k], the
material stiffness [D] is required to relate stresses {f} to
strains {e}, that is

{f} = [Di{e} (#2))
where
S €
{f} =4/ (and{e} =4 ¢
Vi Vv

For a linear elastic isotropic material, in a plane stress
state

1 v 0
[D]=1 v o1 0 (22)
V10 0 1-w2
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(b) Concrete Component

(c) Reinforcement Components

To reflect the nonlinear behavior of reinforced con-
crete as defined previously, matrix [D] must be modi-
fied.

Assume that the global reference system is measured
in X, Y space and that the element reference axes are x,
y as defined in Fig. 4. Further, the reinforcement ori-
entations within the element are measured in x/, y/ axes
systems. The angles 8, ¢, and «; are used to relate di-
rections.

The material stiffness matrix [D] for the element is
defined with respect to the global X, Y axes by first de-
fining relations for the concrete component [D], and for
each of the reinforcement components [D],. The total
stiffness matrix is then determined by combining the
component stiffness matrixes, using appropriate trans-
formations to take into account the directional depen-
dence of the materials. Thus

(D] = [TV [DI(T] + 2 (T DL [T] (23)

Note that [7] will differ for each of the components.

According to the MCFT, cracked concrete can be
considered as an orthotropic material with its principal
axes'? corresponding to the direction of the principal
tensile strain and principal compressive strain, respec-
tively. Further, after cracking, Poisson’s effect can be
considered to be negligible, Thus, the concrete material
stiffness matrix [D], evaluated with respect to the prin-
cipal 1, 2 axes system is

) 40 0
Dl.=| 0 E; O (24)
0 0 G,
where
6(‘ = (Em 'Ecz)/(Ecl + Erl) (25)

and where E,, and E,, are the secant moduli as evalu-
ated using Eq. (17) and (18) for a particular stress/
strain state.

For each reinforcement component, a reinforcement
material stiffness matrix [D],; is evaluated as follows
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Fig. 5—Flowchart for nonlinear finite element proce-
dure

(Dl = i=xy (26)

o o M
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where E, is the secant moduli for the reinforcement
steel, again as determined for a particular stress/strain
state using Eq. (19) and (20). Note that the previous
formulation makes no allowance for dowel action al-
though the possibility to do so exists. Also note that the
formulation presented here is for orthogonally rein-
forced panels (i.e., i = x, y) but can be generalized to
include arbitrary reinforcement patterns.

The transformation matrix [7°] to be used in Eq. (23)
is given!’ by

cosiy sin%y cosysiny
sin?y cos?y — cosysiny 27
—2cosysiny 2cosysing (cos*y — siny)

(7] =

where, for the concrete component
vV=¢+pB=180-6.+ B (28)
and for the reinforcement components

Y=o +8 29
30

Having determined the matrix [D], the element stiff-
ness matrix [k] can then be evaluated. Standard proce-
dures can be used, as described in Reference 11 and de-
pendent on the order of the finite element involved, but
summarized as

(k] = § [B)" [D}IB] dV (30)

where [B] is dependent on the assumed element dis-
placement functions. For triangular and rectangular
plane stress elements based on linear displacement
functiens, the coefficients of the stiffness matrix can be
evaluated using closed-form expressions,'® eliminating
costly numerical integration procedures. It should be
noted that the element stiffness matrixes and the global
stiffness matrix [K] remain symmetric matrixes.

By using the modified elastic procedures in an itera-
tive manner, progressively refining the calculated ma-
terial stiffness matrixes [D] for each element, a nonlin-
ear analysis can be effected. The algorithm suggested is
summarized in Fig. 5. First, the structure properties
(e.g., joint coordinates, element indexes, support con-
ditions, etc.) and material properties (e.g., concrete
strength, reinforcement orientation, percentage and
strength, element thickness, etc.) are defined. Next,
joint loads or distributed element loads are input and a
nodal force vector {R} is calculated. Secant stiffness
values for the materials in each element (i.e., E,,, E,,
ESX,E_’S,) are estimated and the material stiffness matrixes
[D] are computed. For the first iteration, the coeffi-
cients for an uncracked isotropic material [i.e., as given
in Eq. (22)] can be used. The element stiffness matrixes
[k] for each element are calculated using Eq. (30), and
the structure stiffness matrix [K] is assembled. The ma-
trix [K] is then inverted, and the unknown nodal point
displacements {r} are found

{r} = [K]"' {R} E2))

From the joint displacements, the element strains and
element stresses are determined

{e}
i

For each element, knowing the strains, new secant
moduli (E,,,E,,, E,,, and E,)) are calculated using Eq. (1)
through (10), and Eq. (17) through (20). A new mate-
rial stiffness matrix [D}]’ is determined for each ele-
ment using Eq. (23) through (29). If the material stiff-
ness matrixes have not converged, that is if [D]’ # [D],
then [D]’ can be used as the new estimate and the anal-
ysis is repeated. After several iterations, the calculated
values will converge and final results can be obtained.
This procedure was implemented into an existing lin-
ear elastic finite element code, with the resulting pro-
gram named TRIX. Approximately 100 man-hours were
required to effect fully the conversion. TRIX utilizes a
6-deg-of-freedom plane stress triangle (CST) and an

[Bl{r} (32

[D){e} (33)
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8-deg-of-freedom plane stress rectangle (PSR) to model
membrane elements. In addition, a 4-deg-of-freedom
truss bar element is available for modeling discrete
reinforcing bars. Explicit stiffness matrix formulations
for the CST and PSR elements, and detailed calcula-
tions for an example analysis, are given in Reference
18.

EXPERIMENTAL CORROBORATION

Experimental results were examined to obtain an in-
dication of the accuracy of the proposed procedure.
Three substantially different types of test specimens
were analyzed using TRIX, and the results were com-
pared to the observed behaviors. As well, the predicted
responses obtained using the more complex program
FIERCM were also examined for comparative purposes.
(Note that FIERCM, also based on the MCFT, utilizes a
tangent stiffness formulation, higher order elements,
and a substantially different tension stiffening model.)

Bhide and Collins' reported a test series involving 31
panels loaded under various combinations of tension
and shear. Panel PB21, shown in Fig. 6(a), was heavily
reinforced in one direction (o,=0.02195) but not rein-
forced in the transverse direction (o, = 0). Uniformily
applied edge loads resulted in a ratio of uniaxial tensile
stress to shear stress of 3.1:1 (i.e., f, = 3.1v,, f, = 0).
Loads were monotonically increased in constant ratio
until failure occurred.

Since the material properties and stress conditions
were uniform throughout, one element was sufficient to
model the structure [see Fig. 6(b)]. Nevertheless, the
panel represented a severe test for any analysis proce-
dure since predicted behavior is highly dependent on
the assumed constitutive relations for concrete. The
lack of reinforcement in the transverse direction fur-
ther tests the numerical stability of the procedure.

The predicted response for Panel PB21 obtained
from a TRIX analysis is compared to the observed be-
havior in Fig. 6(c). [Note that theoretical behavior is
marked by a smooth transition from uncracked to
cracked conditions due to the tension stiffening for-
mulation used, i.e., Eq. (7)]. Good agreement is seen
both in terms of load-deformation response and ulti-
mate strength. The ratio of the experimental to pre-
dicted shear strength is 1.08. The response predicted by
FIERCM is significantly weaker, with a ratio of experi-
mental to predicted shear strength of 1.32. Bhide, in
modifying the MCFT to account for dowel action and
crack slip, reports a strength ratio of 1.05 for this
panel.

A deep beam tested by Leonhardt and Walther,*
shown in Fig. 7(a), was also examined. The beam was
1600 mm (63 in.) square and 100 mm (4 in.) thick in di-
mension, was simply supported along the bottom edge,
and was subjected to a uniformly distributed load along
the top. Vertical reinforcement was uniform through-
out (p, = 0.00175). The horizontal reinforcement was
heavier in the lower regions (p, = 0.01787) and lighter
above (p, = 0.00175). This specimen represented a
membrane structure with smeared reinforcement whose
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Fig. 6—Analysis of Bhide panel specimen PB2] (25.4
mm = 1Iin.; 6.895 MPa = 1 ksi)

behavior would be dependent on the nonuniform na-
ture of the stress and strain fields generated within. For
analysis, using symmetry, half the beam was modeled
using 128 rectangular elements [see Fig. 7(b)].

Shown in Fig. 7(c) is the observed response of the
beam in terms of the midspan deflection against the to-
tal load applied. The response predicted using TRIX,
also shown in Fig. 7(c), closely approximates the ob-
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Fig. 8—Analysis of Bresler and Scordelis shear beam
Al 25.4 mm = lin.; 6.895 MPa = 1 ksi; 4.448 kN =
1 kip)

served behavior. Aspects of response pertaining to
strength, stiffness, cracking patterns, reinforcement
stresses, and concrete distress regions were all in good
agreement. Also shown is the response predicted using
FIERCM, which correlates equally well.

One in a series of beams tested by Bresler and
Scordelis?' was also examined. Beam A-1, described in
Fig. 8(a), was heavily reinforced with bottom longitu-
dinal steel but lightly reinforced with transverse steel.
Thus, the beam was designed to experience a concrete
shear failure when simply supported and subjected to a
concentrated load at the midspan. The beam was mod-
eled using 120 rectangular elements and 40 truss bar
elements [see Fig. 8(b)]. The longitudinal reinforce-
ment was modeled in a discrete manner using the bar
elements, while the shear reinforcement was included in
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the properties of the rectangular elements and thus
modeled in a smeared manner. This case differs from
the Leonhardt and Walther deep beam in that the non-
uniformly distributed reinforcement had to be mo-
delled discretely and that flexural behavior was a major
influencing factor.

Shown in Fig. 8(c) are the predicted and observed
load-deflection response curves for Beam A-1. Again,
the behavior predicted using TRIX is seen to accurately
model the actual response. Cracking patterns and rein-
forcement strains were also in close agreement. The re-
sponse predicted by FIERCM, using rectangular ele-
ments based on cubic displacement distributions, is no
more accurate.

One final comparison can be made with respect to
the failure loads of the four test panels from the pre-
diction competition.! While many complex nonlinear
finite element procedures were used by various re-
searchers, the best set of predictions was made by Cer-
venka using a simple tangent stiffness formulation. For
the four panels, the mean of the ratio of experimental
to predicted ultimate shear stress obtained by Cervenka
was 0.91. Using TRIX, based on the procedures de-
scribed in this report, the accuracy of the predictions is
significantly improved to where the ratio is 0.98. Using
the more complex FIERCM routine, a mean ratio of 0.99
is obtained.

APPLICATIONS

The procedure described is applicable to the analysis
of reinforced concrete structures in which a plane stress
state can be assumed. The structure reinforcement and
resulting crack pattern should be well distributed, and
the acting loads should be short-term and monotonic.
The procedure should not be used in structures where a
single crack dominates response or where dowel action,
bond slip, or previous loading have a significant influ-
ence.

As an example application, the procedure will be
used to analyze the response of a reinforced concrete
wall containing a small square-shaped perforation. A
wall portion 850 mm (33.5 in.) square and 70 mm (2.75
in.) thick will be assumed, with a 150 mm? (6 in.2) per-
foration at the center [see Fig. 9(a)]. Reinforcement is
assumed uniform in the vertical and horizontal direc-
tion, both at a reinforcement ratio of 0.015. The con-
crete strength is 25 MPa (3.625 ksi), and the reinforce-
ment strength is 400 MPa (58 ksi). The wall is sub-
jected to pure shear loads. The finite element model
used to represent one-quarter of the structure is shown
in Fig. 9(b). A total of 12 rectangular elements and 28
triangular elements were used, and all reinforcement
was modeled in a smeared manner accounted for in the
membrane element specifications.

Two analyses were made of the perforated wall ele-
ment. In the first, reinforcement interrupted by the
opening was replaced in an equal amount by reinforce-
ment placed to either side with appropriate provisions
made for development length. This is roughly in ac-
cordance with the guidelines of ACI Committee 313,%
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Fig. 9—Analysis of hypothetical wall specimen with
perforation (25.4 mm = 1in.; 6.895 MPa = 1 ksi)

which recommends that 120 percent of the interrupted
reinforcement be replaced. In the second analysis, the
interrupted reinforcement was not replaced. Also, a
third analysis was conducted using a single-element
model to determine the behavior of the wall if it were
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Fig. 10—Predicted damage in perforated wall elements
just prior to failure (6.895 MPa = 1 ksi)

not perforated. The load-deformation responses deter-
mined for all three are shown in Fig. 9(c). Note that the
shear stress shown is the nominal stress applied uni-
formly along the boundary edges and that the shear
strains are average values determined over the entire
area of the wall element.

The nonperforated wall structure experiences a linear
response up to the cracking stress of 1.65 MPa (0.240
ksi). Beyond cracking, there is a gradually softening re-
sponse as the tension stiffening effect is reduced. Due
to the geometry and loading, stresses and strains are
uniform throughout at all times. At a shear stress of 6.0
MPa (0.870 ksi), a ductile failure occurs as the hori-
zontal and vertical reinforcement yield simultaneously
at all points within the wall panel.

In the perforated wall element not having replace-
ment steel, first cracking occurs around the top corner
of the perforation at a shear stress of 0.55 MPa (0.080
ksi). As loading continues, cracking becomes more
widespread but is most severe around the opening. First
yielding of the vertical reinforcement (in the quarter
model) occurs at a shear stress of 2.5 MPa (0.360 ksi),
followed by first yielding of the horizontal reinforce-
ment at a shear stress of 3.3 MPa (0.480 ksi). Local
crushing of the concrete is first experienced at a shear
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stress of 3.7 MPa (0.540 ksi). As loads increase, the
zones of yielding and crushing spread, and at 4.9 MPa
(0.710 ksi) shear, the distress regions are fairly wide-
spread, as shown in Fig. 10(a). At a shear stress of 4.99
MPa (0.720 ksi), a ductile shear failure of the concrete
occurs across the element. The overall stiffness of the
wall element as compared to the nonperforated wall is
noticeably weaker, as evident in Fig. 9(c).

In the perforated wall with replacement steel added,
cracking again begins at a shear stress of 0.55 MPa
(0.080 ksi) with a subsequent reduction in wall stiff-
ness. First yielding of the vertical reinforcement occurs
at a shear stress of 3.5 MPa (0.510 ksi), first yielding of
the horizontal reinforcement occurs at 4.3 MPa (0.620
ksi), and first local crushing of the concrete occurs at
4.9 MPa (0.710 ksi) shear. These distress zones are lim-
ited to small regions in the vicinity of the opening and
occur at significantly higher load levels than in the wall
having no added reinforcement. At a shear stress of 5.3
MPa (0.770 ksi), just before failure, the damage zones
are still relatively minor [see Fig. 10(b)] and would be
perhaps imperceptible. At a shear stress of 5.4 MPa
(0.780 ksi), a brittle failure of the wall occurs by crush-
ing shear failure of the concrete.

Thus, although all interrupted reinforcement is re-
placed, the element behavior is significantly altered by
the presence of an opening. Not only is the stiffness
and ultimate load capacity reduced, but the failure
mode is changed from that of a ductile yielding of re-
inforcement to one involving a sudden brittle failure of
the concrete. Adding an additional 20 percent in re-
placement steel, as per ACI 313 guidelines, would not
reverse the change in failure mode.

CONCLUSIONS

A nonlinear finite element procedure was developed
to predict the response of reinforced concrete mem-
brane elements. The procedure is based on a secant
stiffness formulation, incorporating constitutive rela-
tions for concrete as derived from the modified
compression field theory and utilizing only low order
finite elements. Conclusions derived from the work in-
clude the following:

1. The response of reinforced concrete membrane
structures can be predicted accurately using nonlinear
finite element techniques.

2. Nonlinear finite element formulations can be sim-
ple enough such that currently existing linear elastic
analysis programs can be converted readily to nonlin-
ear analysis capability.

3. In developing a nonlinear formulation, the defini-
tion of realistic constitutive relations is more critical
than the formulation of complex elements or solution
procedures.

4. A secant stiffness approach can be as successful as
the more common tangent stiffness approach, while
being less restrictive on the nature of the constitutive
relations that can be implemented or the solution pro-
cedures required.
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5. Low-powered elements can be used in nonlinear
analyses without unduly compromising accuracy, yet
minimizing the potential for numerical stability prob-
lems.

6. Nonlinear finite element analysis can be a useful
tool in investigating design details or the load-defor-
mation response of reinforced concrete structures.
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NOTATION

E = modulus of elasticity of linear isotropic material
E. = modulus of elasticity of concrete (initial tangent stiffness)
E. = secant modulus of concrete in principal tensile strain direc-
tion
E, = secant modulus of concrete in principal compressive strain
direction
E, = secant modulus of reinforcement in x-direction
-:, = secant modulus of reinforcement in y-direction
7 = compressive strength of concrete cylinder
f. = principal tensile stress in concrete
f. = principal compressive stress in concrete
f. = concrete cracking stress
f.. = average stress in concrete in x-direction
f., = average stress in concrete in y-direction
f. = average stress in x-reinforcement
f, = average stress in y-reinforcement
f. = element stress in x-direction
f, = eclement stress in y-direction
S = vyield stress of x-reinforcement
Jf,, = vyield stress of y-reinforcement
G. = secant shear modulus of concrete
v,, = shear stress on concrete, relative to x, y axes
v, = shear stress on element, relative to x, y axes
o = orientation of reinforcement relative to element x, y axes
g = orientation of element x, y axes relative to global X, Y axes
€ = principal tensile strain in concrete
& = principal compressive strain in concrete
¢, = strain in concrete cylinder at peak stress f;
€, = strain in concrete at cracking
¢, = strain in x-direction
¢, = strain in y-direction
v, = shear strain relative to x, y axes
6. = angle of inclination of principal stresses/strains in concrete
¢ = orientation of crack direction relative to element X, y axes
¥ = characteristic angle in transformation matrix
p. = steel reinforcement ratio in x-direction
p, = steel reinforcement ratio in y-direction
[B] = element strain function matrix
[D] = composite material stiffness matrix
[D]. = concrete material stiffness matrix
[D], = reinforcement material stiffness matrix
{e} = element strain matrix
{f} = element stress matrix
[k] = element stiffness matrix
[K] = structure stiffness matrix
{r} = structure nodal displacement matrix
{R} = structure nodal force matrix
[T] = transformation matrix
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