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Abstract

A calculation procedure is described for estimating crack shear stresses and crack slip displacements from average
strain measurements made on reinforced concrete panels. Several series of panels, previously tested, are examined and
crack shear-slip data are extracted. These data are compared against the predictions of previously developed crack slip
models, as well as against an alternative constitutive model proposed herein. Reasonable correlation is found between
experimental and calculated values, particularly at near-ultimate load conditions. It is then shown that including crack
shear slip behaviour in a computational model results in improved accuracy in terms of predicted load-deformation re-
sponse and ultimate load capacity for reinforced concrete elements such as panels, beams and shear walls. Further, it is
shown that rigorously accounting for crack slip displacements results in a better representation of various subtle aspects
of behaviour, such as the failure mode and the capacity of elements to deform and redistribute load.

1. Introduction

In the development of nonlinear finite element proce-
dures for modelling the behaviour of reinforced con-
crete elements subjected to general in-plane stress con-
ditions, formulations have generally proceeded in one of
two directions; either where cracks are considered to be
smeared within the concrete continuum or where cracks
are considered to be discrete and accounted for in the
meshing of the structure. In the context of smeared
crack models, a further subdivision occurs depending on
whether the crack orientations are taken as fixed or al-
lowed to rotate. With rotating-crack models, it is as-
sumed that a gradual reorientation occurs in the crack

direction, as dictated by the loading or material response.

Along with the change in crack direction, a gradual re-
orientation is assumed to occur in the principal stress
and strain directions in the concrete. Conversely, with
fixed-crack models, the crack direction remains fixed in
the direction of first cracking; in some formulations, if
stress conditions dictate, new cracks may form at alter-
nate inclinations. An important aspect of the
fixed-crack approach is that shear stresses may develop
on the crack surfaces and crack shear slip may occur as
a result. Rotating crack models, in general, do not ac-
count for crack shear slips in the formulation of the
element constitutive response.

The Modified Compression Field Theory (MCFT),
developed by Vecchio and Collins (1986), is one possi-
ble model shown to provide reasonably consistent and
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accurate simulations of reinforced concrete behaviour. It
is, in essence, a rotating smeared-crack model that
represents concrete as an orthotropic material wherein
equilibrium, compatibility, and constitutive relations are
formulated in terms of average stresses and average
strains. Also central to the model, however, is the con-
sideration of local stress conditions at crack locations.
Local shear stresses on crack surfaces are calculated and
checked against a limiting value. If the crack shear
stresses become excessive, reductions are made to the
post-cracking tensile stresses in the concrete. However,
crack shear slips associated with the shear stresses are
not explicitly calculated nor accounted for in the ele-
ment deformations.

The Disturbed Stress Field Model (DSFM) was pro-
posed by Vecchio (2000, 2001) as an alternative formu-
lation. Relative to the MCFT, the DSFM attempts to
provide a better phenomenological representation of the
behaviour of concrete by explicitly allowing for crack
shear slip in the description of element deformation. It
dispenses with the condition that average principal
stress and average principal strain directions remain
coincident, and removes the crack shear stress check
that was found to be troublesome and sometimes ig-
nored by others in their interpretation or implementation
of the MCFT. In relating crack shear slips to crack shear
stresses, the DSFM incorporates a tentative formulation
based on the work of Walraven and Reinhardt (1981) in
recognition of its relative simplicity and proven accu-
racy.

The mechanisms of crack shear transfer, also known
as aggregate interlock action, have been studied exten-
sively. In addition to Walraven (1981) and Walraven
and Reinhardt, notable work has been done by Bazant
and Gambarova (1980), Dei Poli et al. (1987), Okamura
and Maekawa (1991), and Dei Poli et al. (1990), among
others. The Walraven-Reinhardt fundamental model
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was based on a statistical analysis of the crack structure
and associated contact areas between crack faces; crack
shear stresses were formulated as functions of crack
normal and tangential displacements. The rough crack
model proposed by Bazant and Gambarova expanded on
the previous work, developing formulations for consti-
tutive response better suited for nonlinear incremental
analyses. It is important to note that the data used to
develop and calibrate these crack slip models were
largely derived from ‘push-off” or ‘pull-off” specimens
of the type shown in Fig. 1(a).

In work leading to the formulation of the MCFT, and
in subsequent experimental investigations, a large num-
ber of reinforced concrete panels were tested using spe-
cially developed apparatus (see Fig. 2). A schematic
representation of a typical panel element is shown in
Fig. 1(b). While data from these panels have been ex-
tensively studied with regards to determining the con-
stitutive response of cracked concrete in compression
and in tension, little attention was given to extracting
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Fig. 1 Specimen types for studying crack shear slip
(a) Push-off specimen (b) Shear panel.

information on crack shear behaviour.

This paper re-examines a large body of test panel data
with the aim of acknowledging and better understanding
the nature and influence of crack shear behaviour in-
herent in the panels’ response. The data are next com-
pared against behaviour predicted by the models pro-
posed by various researchers. The suitability of these
models for implementation into the DSFM, or other
conceptually similar fix- or rotating-crack models, is
then assessed. The primary contributions of this paper
are: (i) documentation of a calculation procedure for
extracting crack shear stress-slip response from test
panel data; (ii) demonstration that currently available
models for crack shear slip correlate reasonably well
with the data extracted from a large set of test panels;
(iil) proposal of an alternate model combining the fa-
vourable features of two existing models; and (iv) dis-
cussion as to why it is important to consider crack
shear-slip.

2. Crack shear-slip models

While a number of models are available for representing
crack-shear (aggregate interlock) mechanisms, the most
suitable for implementation into the Disturbed Stress
Field Model are those by Walraven and Reinhardt
(1981) and by Okamura and Maekawa (1991) owing to
their simplicity and adaptibility to a secant stiff-
ness-based formulation.

2.1 Walraven model:
An adaptation of the formulations proposed by Wal-
raven and Reinhardt produces the following:

_ Veit Veo
8 =——03 20.707 _ 1)
1.8w +(0.234w 0.20)-f¢

where &, is the tangential slip along the crack (mm), v
is the shear stress on the crack surface (MPa), w is the
width of the crack (mm), and f. is the concrete cube
strength (MPa). An initial offset in the crack shear-slip
relation is provided by the term v,,, taken as follows:

f
Veo :%- 2)

Note that in this adaptation, the influence of local
normal compressive stresses on the crack surfaces are
not explicitly considered, but are nevertheless a factor in
that they influence the crack width.

2.2 Okamura-Maekawa model:

The formulation proposed and utilized by Okamura and
Maekawa in their fixed non-orthogonal crack model is
given by:
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Fig. 2 Facilities used for panel tests (a) Panel Element
Tester (b) Shell Element Tester.

where o Yel 4

Vemax

The term v, represents the theoretical maximum
shear stress that can be resisted on the crack, and was
previously given by Vecchio and Collins (1986) as:

/
et (MPa). (5)

chax:4_
031+ 24V
at+l6

where a is the maximum aggregate size (mm) and . is
the concrete 28-day cylinder strength. The average
crack width, w, can be estimated from the current prin-
cipal tensile strain in the concrete, €, and from the av-
erage crack spacing, s, as:

w=g s (6)

Note that as v,; approaches V.mx, @ shear slip failure
occurs (i.e., 8, becomes infinitely large).

2.3 Lai-Vecchio model:

The Walraven-Reinhardt formulation model introduces
some instability into the computational algorithm be-
cause of the initial slip, represented by the v, term.
[That is, with a nonzero v, term and little or no shear
stress acting on the crack, slip can occur in either direc-
tion without discretion.] The Okamura-Maekawa for-
mulation avoids this difficulty, and further provides the
opportunity to better define the maximum shear stress
that can be permitted on the crack; however, it was
found to underestimate slip displacements at intermedi-
ate stress values. A combination of the two models,
proposed here, attempts to avoid the limitations of each.
Hence, it is proposed that:

v
S5 =82 W N

where 5= 0.3 Vomax * veo ®)
1.8 0-8+4(0.234 0707020 £,

and where ¥ and v, are as previously defined. This

formulation affords the opportunity to consider factors

such as aggregate size in defining V.m.x (found to be

important in high strength concrete), and remains con-

sistent with previous formulations used with the MCFT.

" The three constitutive models are compared in Fig. 3
for two representative concrete strengths and three crack
width conditions. (A maximum aggregate size of 20
mm was assumed in the calculations.) Note that while
initial slip values vary, the stiffnesses of the responses
are fairly consistent amongst the three models.
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Fig. 3 Comparison of crack shear stress-slip models
(a) For 25 MPa concrete (b) For 60 MPa concrete.

3. Procedure for calculating crack shear
stresses and slips from panel test data

A reinforced concrete element, subjected to general
stress conditions, may experience cracking. If so, local
shear stresses may develop on the crack interfaces, de-
pending on the loading and reinforcement conditions.
The local shear stresses will ordinarily be accompanied
by shear slip along the crack interfaces. The objective
here is to relate the local shear stresses to the shear slips
occurring on the crack surfaces, as manifested in test
panels.

In the approach adopted, the deformation of a rein-
forced concrete element is considered to be composed
of both continuum straining and discontinuous slip
along crack surfaces, as shown in Fig. 4. The continuum
straining is the result of mechanical compliance to stress
and the smearing of crack widths over a finite area. The
slip component is the result of rigid body movement
along the crack interfaces. Relative to a reference
X,y-system, strains measured on the surface of the ele-
ment, over gauge lengths sufficiently long to span sev-

eral cracks, will intrinsically contain both components
of deformation. These measured (total) or ‘apparent’
strains will be denoted as [e] = {&,¢&, yxy}T. The incli-
nation of the principal total strains, 6., can be calculated
using usual transformation procedures.

The actual (net) strains in the continuum will be de-
noted as [g;] = {€ &cy ycxy}T. It is these strains, shown
in Fig. 4(a) that are to be employed in appropriate con-
stitutive relations to determine average stresses from the
average strains in the concrete. The actual inclination of
the average principal strains in the continuum, 9, is
again calculated from standard transformations. This
inclination is assumed to equal the inclination of the
average principal stresses in the concrete (8,), and also
defines the perpendicular crack direction.

Consider next the discrete slip occurring along the
crack surfaces (Fig. 4(b)). Assume that the cracks are
inclined in the direction of the concrete average princi-
pal tensile stress, that the cracks have an average width
and spacing of w and s, respectively, and that the slip

€y
r

]

Yo~ 8,/

Fig. 4 Deformations of Panel Element (a) Due to aver-
age (smeared) continuum response (b) Due to slip
along crack surfaces (c) Combined.
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along the crack surface is of magnitude 3,. One can de-
fine an average shear-slip strain as follows:

_5
S

Ts )

Given the element total strains [g], and the inclination
of the net principal strains and stresses, 6,, one can cal-
culate the average shear-slip strain from the following
relationship:

Ys =Vxy "€08205 +(gy —€x)-sin 20 (10)

Assume that the reinforced concrete element is or-
thogonally reinforced, with the reinforcement ratios in
the x- and y-directions given by p, and p,, respectively.
Further, assume that the element is subjected to uniform
stresses, [06] = {0y Oy rxy}T, applied along the element
boundaries (see Fig. 5(a)). As a result, the element un-
dergoes deformation, and the total strain condition is
measured as [€] as previously discussed.

From the measured strains in the x- and y-directions,
the average strains in the reinforcement (f;, and f,y) can
be calculated from an appropriate constitutive model.
Given the reinforcement stresses and the applied load
conditions, the average stresses in the concrete are then
calculated as follows:

fcxzcx'px’fsx (11)
fy=0y-py-fy (12)
Vexy = Tay (13)

Next, from standard transformations, the concrete
principal stresses (f;; and f;) and inclination of the av-
erage stress field, 6,, are found (see Fig. 5(b)). The
value of 0, thus determined is used in Equation 10.

At a crack, it is assumed that the local principal ten-
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Fig. 5 Stress conditions in panel element (a) Loading
and reinforcement conditions  (b) Mohr’s circle for av-
erage stresses in concrete.

sile stress in the concrete diminishes to zero. Hence, in
order for the average stress f.; to be transmitted across
the crack, there must be an increase in the local stresses
in the reinforcement produced by an increment in the
average principal tensile strain, Ag,,. The local strains
in the reinforcement will thus be

2
Eserx = Esx + ASlcr - Cos ec (14)

Egery = Egy + A1 - SIN'0, (15)

and the local stresses, fi, and fi.,, can be calculated
according to appropriate constitutive relationships. The
value of Ag,,, is found by satisfying the following equi-
librium condition:

for = Py - (fierx - fin) - €O5%0,
+ Py (fscry - sy) . Sil‘lzec (16)

Once the local reinforcement stresses are known, then
the local shear stress on the crack can be determined as
follows:

Vei = Px (fscrx - sx) ' COSQG Sineo - Py

- (feery - fsy) - 5inB,c080, (17

Note that the formulations above are limited to or-
thogonally reinforced elements, and that elastic and
plastic offset strains are not considered. A more com-
prehensive discussion, one that includes offset strains
(e.g., Poisson’s effects) and multiple non-orthogonal
reinforcement, is given by Vecchio (2000). Also note
that full bond and no dowel action have been assumed.

4. Shear-slip data from test panels

The Panel Element Tester, developed in 1978, enabled
the testing of 890 x 890 x 70 mm reinforced concrete
panel elements under general conditions of in-plane
stress (see Fig. 2(a)). In 1984, The Shell Element Tester
was added, with the capability of loading 1525 x 1525 x
315 mm panels under various combinations of in-plane
and out-of-plane stresses (see Fig. 2(b)). Since then,
over 200 panels have been tested covering a wide range
of structural parameters and loading conditions.

Selected for this study were only those panels sub-
jected to monotonically increasing in-plane stresses. The
PV-Series of panels, tested by Vecchio and Collins
(1982), were generally orthogonally reinforced, con-
structed of normal strength concrete, and subjected to
shear-dominant conditions. The PB-Series of panels,
tested by Bhide and Collins (1989), were generally uni-
axially reinforced, constructed of normal strength con-
crete, and tested under various combinations of uniaxial
tension and in-plane shear. The PA- and PHS-Series
panels, tested by Vecchio et al. (1994), were or-
thogonally reinforced, constructed of high strength con-
crete, and subjected to various combinations of biaxial
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normal stresses and shear. In addition, the SE-Series of
large-scale panels tested by Kirschner and Collins
(1986) were considered. The Kirschner panels were
tested using the Shell Element Tester; all others were
performed on the Panel Element Tester.

For each test panel, at various stages through the
course of testing, deformations were held constant while
surface strain readings were taken, cracks were meas-
ured, and various other electronic instrumentation was
scanned. [Readings took approximately 15 minutes to
complete.] Hence, at each load stage, an accurate
measure is known of the applied stress conditions (o, oy,
Tyy) and of the resulting average total strains (&, €y, Yxy).
Although there were visible signs of slip along the crack
surfaces (for example, ridging and crushing of the con-
crete along the interfaces, and relative displacements of
opposing faces), no attempt was made to monitor crack
shear slips at that time. However, using the calculation
procedure outlined above, the crack slips can be esti-
mated. Assumptions are required regarding the average
crack spacing, and the constitutive response of the em-
bedded reinforcement. Precise test records were not
maintained with regards to average crack spacings, al-
though notes and photographic evidence suggest that the
average spacing was in the range of 40 to 60 mm at in-
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Fig. 6 Crack shear slips from test panels (a) Variation
with crack shear stresses (b) Variation with normalized
crack shear stress.

termediate and advanced stages of loading in the typical
panel (generally, the more heavily reinforced panels had
a smaller crack spacing). An average spacing of 50 mm
is assumed here (200 mm for the larger SE panels). All
reinforcement used in the construction of the panels was
heat-treated; test coupons exhibited a highly ductile
response with a well defined yield stress. Hence, the
constitutive response assumed for the reinforcement, for
both the average and local behaviour, is bilinear (elas-
tic-plastic). [Also note that the reinforcement was
typically small diameter deformed wire or welded wire
mesh; as such, dowel action and bond slip were negligi-
ble factors.] Calculations were made of the shear stress
on the crack, and the resulting crack shear slip, for each
panel at each load stage. See Appendix I for a sample
calculation.

Shown in Fig. 6 is the resulting crack shear stress-slip
response determined for all panels considered. As one
might expect, the results are widely scattered; in part
due to the assumptions in the calculation procedure, and
in part due to the intrinsic nature of the mechanisms
involved. To reduce the scatter somewhat, only points
where Vv i/Vemax > 0.1 are considered.

5. Correlation of panel data to crack-slip
models

Shown in Fig. 7 are comparisons of the experimental
crack shear slips against those computed using each of
the three models previously described: Wal-
raven-Reinhardt, Okamura-Maekawa, and Lai-Vecchio.
Again, there is considerable scatter, particularly for
points corresponding to early loading stages where the
average crack spacings were in a transitional stage and
had not yet approached the final (assumed) value. At
early load stages, the typically larger than assumed
crack spacings resulted in wider than calculated crack
widths, and hence larger than calculated crack shear
slips.

Figure 8 provides an indication of the correlation
provided by the analytical models when plotted against
increasing shear stress. In general, as the stresses in-
crease, the ratio of the observed to predicted crack slip
achieves a tighter correlation. None of the three models
shows remarkably better correlation than the others. All
three appear to provide a reasonably accurate portrayal
of the crack shear-slip phenomenon, particularly at ad-
vanced stages of loading where the slip mechanism as-
sumes greater importance in influencing the behaviour
of an element.

It is worth noting, at this point, that the correlations
achieved promote confidence in the analytical proce-
dures despite the high scatter. Bearing in mind that the
Walraven-Reinhardt model was developed based on
data derived from significantly different test conditions,
and that the Okamura-Maekawa model was based on a
substantially different analysis philosophy, the correla-
tions are surprisingly good. This general compliance
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was by no means assured a priori, given the number of
assumptions made in the formulation of the DSFM and
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in the method used to analyse the test data. That the
Walraven-Reinhardt model, in particular, should provide
such reasonable correlations gives strength to the DSFM
approach to incorporating crack shear slips into a rotat-
ing crack model. More specifically, it indicates that the
DSFM method of accounting for post-cracking tensile
stresses in the concrete, and the method of calculation of
stresses in the reinforcement, leads to the calculation of
shear stresses and shear slips on the crack surfaces that
are consistent with widely accepted aggregate interlock

models.

It is fair to say that the proposed Lai-Vecchio formu-
lation offers no real improvement in correlations to the
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test data relative to the other two models. Its value is
derived from an ability to accept improved expressions
for Vemax, as they become available, and from better nu-
merical stability and ease of implementation. It will
also allow for the consideration of different aggregate
types, such as expanded shale or crushed stone, and
fibre reinforcement.

6. Implementation in finite element
analyses

The various crack shear slip models discussed were in-
corporated into a nonlinear finite element algorithm.
Details of the finite element procedure are provided by
Vecchio (2001).

To gauge the value of including crack slip modelling
in the analysis of reinforced concrete structural elements,
and to assess the relative accuracy of the formulations
available, nonlinear finite element analysis studies were
then undertaken. Several series of panels, beams and
shear walls were examined; for each, analyses were
undertaken with and without crack shear slips consid-
ered. When considered, crack shear slips were alter-
nately modelled using the Walraven-Reinhardt, Oka-
mura-Maekawa and Lai-Vecchio models in the context
of the Disturbed Stress Field Model. When crack shear
slip was not considered, the analyses were done in the
context of the Modified Compression Field Theory.
All other constitutive models and structural modelling
parameters were maintained identical across the four
sets of analyses for each specimen examined.

The panel elements considered included the PV-, PB-,
PA/PHS-, and SE-Series as previously described. All
panels were modelled using a single-element mesh and
a load-increment approach. Comparisons of the ex-
perimental and computed ultimate shear capacities of
the panels are given in Table 1, where it is seen that all
models provide excellent correlation with the test results.
Amongst those considering shear slip deformations, the
Lai-Vecchio model results in slightly better correlation
in term of the ratio of computed to observed shear ca-
pacity, with a mean of 1.01 and a coefficient of variation
(COV) of 10.5%. Using the MCFT, and hence ignoring
crack shear slips, the accuracy is only marginally
weakened with a mean of 1.03 and a COV of 10.5% for
the 43 panels examined.

To gauge the accuracy of the slip models and analysis
procedures for more complex structures, two series of
shear walls tested by Lefas et al. (1990) were studied.
The test program consisted of 13 walls tested under
various conditions of axial and lateral load, wherein
failure was ultimately governed by shear-compression
mechanisms. The walls were of two types; either rela-
tively squat with a height-to-width ratio of 1.0, or more
slender with a height-to-width ratio of 2.0. A
340-element mesh was used to model the former, and a
536-element mesh was used for the latter; four-node (8
dof) rectangular elements were employed. The ana-

Iytical results are given in Table 2. Excellent correlation
in the calculated lateral load capacity is given by all
models.

In addition to comparing calculated load capacities,

Table 1 Shear Capacities of Panel Specimens.

B Vu-e'(p zu-llwor/vu-er | 3 3
:Beam ;
(MPa) No slip Walraven | Maeckawa |Lai |
PV - Series )
PVI10 3.97 095 0.96 0.96 0.96
PVI1 356 |1.01 1.03 1.03 1.03
PVI12 313 |0.99 0.95 0.87 0.95
PV16 2.14 094 1.00 1.00 1.00
PV18 3.04 [1.12 1.07 0.97 1.07
PV19 3.95 1.03 1.04 0.98 1.02
PV20 426 11.03 1.05 1.01 1.04
PV21 5.03 -1.00 1.11 1.08 1.09
PV22 6.07 [1.02 1.15 1.13 1.13
PV23 8.87 0.81 0.92 0.92 0.92
PV25 9.12 ]0.81 0.90 0.90 0.90
PV27 6.35 1.02 1.18 1.18 1.18
PV28 580  10.99 1.13 1.13 1.13
Mean 0.98 1.04 1.01 1.03
COV(%) 8.88 8.69 9.47 8.50
PA / PHS - Series
PA1 634 1097 0.98 0.97 0.98
"PA2 6.22 0.99 0.99 0.99 0.99
PHSI 295 [0.99 0.92 0.92 0.92
PHS2 6.66 |0.97 0.90 0.77 0.90
PHS3 819 |1.10 1.13 0.96 1.11
PHS4 6.91 1.01 0.98 0.87 0.97
PHSS5 481 |0.91 0.85 0.76 0.86
PHS6 9.89 |0.88 0.94 0.91 0.90
PHS7 10.26 |1.10 1.23 1.22 1.21
PHSS 10.84 [0.99 1.05 1.05 1.05
PHS9 937 [1.00 1.06 0.83 1.00
PHS10 8.58 10.99 1.03 0.93 1.02
Mean 0.99 1.01 0.93 0.99
COV(%) 6.39 10.41 13.44 9.90
PB - Series
PB4 1.16 |1.08 0.98 0.96 0.98
PBS 2.64  |0.92 0.92 0.92 0.92
PB6 .15 |1.10 1.01 0.97 1.00
PB7 0.86 |1.30 1.25 1.19 1.23
PBS8 0.80 |[1.19 1.16 1.13 1.14
PB10 056 |1.18 1.17 1.17 1.17
PB14 1.54 10.98 0.90 0.83 0.88
PBl16 142 |1.20 1.08 1.00 1.04
PB17 122 10.98 0.93 0.87 0.91
PB19 1.28 |1.21 1.06 1.02 1.06
PB20 142|131 1.19 1.14 1.20
PB21 142 10.93 0.82 0.78 0.81
PB22 1.03  |1.03 0.91 0.85 0.89
PB28 1.53 1098 0.84 0.80 0.83
PB29 1.49 |1.12 1.01 0.94 1.00
PB30 1.48 |1.02 0.93 0.86 0.91
PB31 1.15 [1.05 1.00 0.93 0.98
PB32 1.49 11.07 0.94 0.99 0.99
Mean 1.09 1.01 0.96 1.00
COV(%) 10.81 12.19 13.24 124
All panels
Mean 1.03 1.02 0.97 1.01
COV(%) 10.53 10.56 1235 10.5
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Table 2 Lateral load capacities of shear wall specimens.

Vu-!heor/ Vu-exp
Vi-ex
MCFT Walraven | Maekawa | Lai
SW1l1 260 1.08 1.10 1.10 1.10
SW12 340 0.99 1.02 1.02 1.02
SW13 330 1.09 1.11 1.11 1.11
Sw14 265 1.01 1.05 1.04 1.03
SW15 320 0.94 0.97 0.97 0.97
SW16 355 1.05 1.05 1.05 1.05
SWi7 247 1.03 1.05 1.03 1.05
SW21 127 0.97 0.99 0.98 0.98
Sw22 150 1.02 1.03 1.03 1.03
Sw23 180 0.96 0.97 0.95 0.96
Sw24 120 1.04 1.06 1.06 1.06
SW25 150 1.12 1.13 1.13 1.12
SW26 123 0.96 0.97 0.97 0.97
Mean 1.02 1.04 1.03 1.03
| COV(%) 5.40 5.29 551|521

the load-deformation responses and failure modes were
examined for various panel, beam and wall specimens
considered. Representative results are provided by Vec-
chio et al. (2001). General observations are summa-
rized below.

7. Discussion

For many of the specimens considered in the correlation
studies reported above, there is not much difference in
the ultimate load calculated whether slip deformations
are considered (DSFM) or whether they are ignored
(MCFT). [Note: The MCFT compensated for neglect of
the crack slip deformations by employing a greater de-
gree of softening in the concrete compression response. ]
However, there are subtle differences in predicted be-
haviour which are significant. Consider, for example,

the calculated responses for Panel PV19 shown in Fig. 9.

While the ultimate shear stress of the panel can be well
predicted without accounting for slip deformations, the
ductility in the shear stress-strain response is better
simulated if crack slips are considered (see Fig. 9(a)).
Also note that the omission of crack slips result in a
slight over-prediction of the strains in the longitudinal
reinforcement (Fig. 9(b)) and a somewhat more sig-
nificant under-estimation of the strains in the transverse
reinforcement (Fig. 9(c)) relative to the experimental
values. That is, the fully-rotating crack approach, in
neglecting the crack slip displacements, over-estimates
the degree of stress redistribution that can occur in the
element. On the other hand, the allowance for crack
slips (DSFM) is seen to provide better correlation in the
shear stress-strain deformation response, and in the
strains in the longitudinal and transverse reinforcement.
Of course, the diverging orientations of the stress and
strain fields are also better represented when slip distor-
tions are considered (see Fig. 9(d)), although the fully
rotating model provides a reasonable estimate of the
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average value of the two. Finally, the mode of failure is
better represented since, in addition to concrete strut
crushing, the significant degree of sliding along the
crack surfaces predicted to occur more closely corre-
sponds to the actual observed failure mode. [In the ac-
tual test, ridging and crushing along the crack interfaces
was observed.] Hence, accounting for crack shear slip
results in an improved simulation of response that gen-
erally goes beyond the marginal improvement seen in
predicted ultimate load capacity.

Refinements to the current model are required to fur-
ther improve accuracy and reduce the significant levels
of scatter seen in the data. One deficiency that exists,
and should be addressed, relates to the influence of
strain hardening in the reinforcement across cracks.
Currently, local strain hardening effects are not consid-
ered. In reality, the local strains in the reinforcement
across the cracks can be several multiples of the average
strain, depending primarily on the reinforcement ratio
and bond characteristics, and can reach well into strain
hardening behaviour. The higher local reinforcement
stresses attained through strain hardening will, in turn,
influence the calculation of shear stresses on the crack
surfaces, and hence the calculation of crack shear slips.
Thus, a rational and consistent approach that includes
local strain hardening effects will likely result in an im-
proved calculation of crack shear slip. Allowances for
a changing average crack spacing would also improve
results, particularly at low and intermediate load levels.
Finally, more comprehensive corroboration studies are
required, with particular attention paid to effects on de-
formation response.

8. Conclusions

A calculation procedure was developed for calculating
crack shear stresses and crack shear displacements from
the average strain measurements made on reinforced
concrete panels subjected to known uniform edge
stresses. Several series of test panels were examined,
and the crack shear stress and shear slip behaviours for
these panels were determined. The experimental data-
base thus generated was compared against the behaviour
predicted by crack shear-slip relations from widely rec-
ognized models developed by other researchers. As well,
an alternative constitutive relationship was proposed.

The conclusions that can be drawn from this work in-
clude the following:

1. The proposed method for determining crack shear
stresses and slip displacements from panel test data ap-
pears to yield plausible results.

2. Existing crack-slip models (e.g. Walraven-
Reinhardt, Okamura-Maekawa) provide reasonably
good correlation to the panel test data, even though de-
veloped from data obtained from significantly different
test specimens or from different analysis philosophies.

3. The alternate crack-slip constitutive model pro-
posed produces comparable levels of accuracy to those

obtained from the Walraven-Reinhardt and Oka-
mura-Maekawa models, while providing improved fa-
cility for implementation into nonlinear finite element
algorithms, improved numerical stability, and ability to
consider other influencing factors.

4. Accounting for crack shear slip resulted in only
slightly improved predictions of the load-deformation
response and ultimate load capacity of panels and beams,
relative to those obtained if crack shear slips were ig-
nored (as in a fully rotating crack model). The calcu-
lated response of shear wall specimens showed little
change.

5. However, accounting for crack shear slip was im-
portant in better capturing subtleties in response, in-
cluding better estimates of reinforcement strains,
post-peak ductility, and failure mode. As well, it permits
consideration of the divergence in orientation of the
average stress and average strain fields in the concrete,
as seen in the test data.
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Appendix I: Sample calculations
Consider Panel PV19 (Vecchio and Collins, 1982)
which had the following properties:

f,=190MPa a=10mm E, = 200,000 MPa
f,=172MPa_ p,=0.01785  f,, =458 MPa
£,=2.15x10° p,=000713  f,,=299 MPa

At Load Stage 7, the loading condition on the panel
was:
o,=0 o, =0 Ty = 3.48 MPa
The average strain conditions measured were:
£, =0.716 x 107 £,=1987x 107 y,=3.359x 10"

The average crack spacing was approximately 50 mm.
For this load stage, the crack shear slip and crack shear
stresses are calculated as follows:

Step 1: Calculate average strains and averages stresses
in the reinforcement using an elastic-plastic relation-
ship:

£ =& =0.716 x 107
f,=E, &= 143.2 MPa

€y =¢,= 1.987x 107
f,=E, &,=299 MPa(<f,)

Step 2: Calculate average stresses in the concrete using
Egs. (11)-(13):

fox = 04 - pifsx = (0.0) - (0.01785)(143.2)=-2.56 MPa

foy = oy - pyfsy = (0.0) - (0.00713)(299.0)=-2.13 MPa
Vexy = Tyy = 348 MPa
Step 3: Using standard stress transformations, determine
average principal stresses in the concrete:

fCX+fC 1
fclafcz :%ig[(f&:x - fcy)2 +4V§xy]

=1.14,-5.83 MPa

1/2

2y
b=~ tan! | — | = 46.8°
fey-fex

Step 4: Find local stresses in the reinforcement by using

Egs. (14)-(15) and satisfying equilibrium conditions Eq.
(16).

Eeerx = 0.716 X 107 + Agy,* cos’46.8°

Eery = 1.987 X 107 + Agy,* sin’ 46.8°

fscrx = ES © Bsenx < fyx

firy = Es " Eory < iy

(0.01785)(fyery - 143.2)cos” 46.8° + (0.00713)
(fiery - 299)sin” 46.8° = 1.14 (MPa)
- Agj = 1454 x 107
f.rx = 279.5 MPa fury = 299.0 MPa

Step 5: Using Eq. (17), calculate shear stresses on the
crack surface:
vei = (0.01785)(279.5 - 143.2)c0s46.8° sin46.8°

- (0.00713)(299 - 299) sin46.8° c0s46.8°

=121 MPa

Step 6: Using Eq. (10), calculate average shear slip
strain:
Ys = Yxy €0826, + (&, - &) sin20,

=(3.359 x 10”)cos 93.6° + (1.987 x 107 - 0.716

x 10”)sin 93.6°

=1.058 x 107

Step 7: From Eq. (9), determine shear slip along the

crack surface:
8 =7, s=(1.058 x 107)(50.0) = 0.053 mm

Notation

a = aggregate size (mm);

E. = initial modulus of elasticity of concrete;

E, = elastic modulus of reinforcing steel;

f. = compressive strength of concrete cylinder (28
days);

f, = tensile strength of concrete;

f.. = compressive strength of concrete cube;

f., = oprincipal tensile stress in concrete (in
1-direction);

f., = principal compressive stress in concrete (in

2-direction);
f, = average stress in reinforcement;
f., = local stress (at crack) in reinforcement;
f, = Yyield stress of reinforcement;
s = average crack spacing in 1-direction;

v. = shear stress on concrete relative to reference
x,y-directions;
v = shear stress on crack surface;

Vemax = Mmaximum shear stress that can be resisted on
crack surface;

w = average crack width;

¥s = shear strain due to slip along crack surface;

Ag, = local incremental strain in 1-direction at crack
locations;

8, = slip displacement along crack surface;

8%, = experimental slip displacement (from test panel);

2
“
I

= theoretical slip displacement (from constitutive
model);
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[e] = apparent (total) average strains in element, in- €, = compression strain at peak stress f'. in concrete
cluding crack slip strains; cylinder (negative value);

[ec] = average strains in concrete, net of crack slip 06 = inclination of normal to crack direction in con-
strains; crete;

€1 = strain in concrete in principal tensile stress direc- 8. = inclination of apparent (total) principal strains in
tion; concrete;

€7 = strain in concrete in principal compressive stress 6, = inclination of principal stresses in concrete;
direction; p  =reinforcement ratio; and

g5 = average strain in reinforcement; [6] = average stresses acting on element.



