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Predicting the Response of Reinforced
Concrete Beams Subjected to Shear Using
Modified Compression Field Theory

by Frank J. Vecchio and Michael P. Collins

The recently developed modified compression field theory provides a
unified approach to the analysis of reinforced concrete elements un-
der general in-plane stress conditions. The concept and formulations
of this theory can be extended 1o enable the analysis of reinforced
concrete beams loaded in combined shear, moment, and axial load.
Predictions of ultimate load capacity and complete load-deformation
response of beams can thus be obtained.

An analytical model for the analvsis of beams, based on the mod-
ified compression field theory, is described in the paper. A rigorous
solution procedure is presented along with (wo alternative approxi-
mate procedures. Predictions of the model are compared with exper-
imental results and are shown (o predict behavior accurately. The cu-
pabilities of the model are also discussed in relation to currently
available procedures.

Keywords: axial loads; beams (supports); compression; moments: prestressed
concrete; reinforced concrete; shear strength; tension.

Current design procedures for reinforced concrete
beams in shear are largely based on the truss analogy
developed by Ritter' and Morsch® nearly a century ago.
The truss analogy proposes that a cracked reinforced
concrete beam acts like a truss with parallel longitudi-
nal chords, a web composed of diagonal concrete
struts, and transverse steel ties (see Fig. 1). When shear
is applied to this truss, the concrete struts are placed in
compression, while tension is produced in the trans-
verse ties and in the longitudinal chords. The force
components in each can be determined by statics. In
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Fig. 1 — Truss analogy model for concrete beams in
shear
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discussing the angle of inclination of the concrete struts
6, Morsch concluded that it was mathematically impos-
sible to determine the slope but that 45 deg was a con-
servative assumption. The equation for the amount of
transverse reinforcement required, arising from
Morsch’s assumption, became known as the truss
equation for shear. It has formed the basis of many of
the design procedures for shear used since.

Experience with the 45-deg truss analogy revealed
that the results of this theory were typically quite con-
servative, particularly for beams with small amounts of
web reinforcement. Consequently, it became accepted
design practice in North America to add an empirical
correction term to the truss equations. In the ACI
Building Code (AC!I 318-83), this added shear capacity
is taken as being equal to the shear at the commence-
ment of diagonal cracking and is commonly referred to
as the “‘concrete contribution.” Various expressions for
this concrete contribution have been produced to ac-
count for different loading situations and different
types of members. These current design procedures for
shear have been called ‘‘empirical mumbo jumbo.’”*

Recent years have seen a renewed interest among re-
searchers concerning the behavior of reinforced con-
crete in shear. Much work has been directed toward
formulating a more general model, free of empirical
limitations. In particular, it was realized that the angle
of inclination of the concrete struts § was really only a
part of the strain compatibility requirements that have
to be satisfied together with the equilibrium require-
ments. The assumption that # was equal to 45 deg was,
in general, incorrect. Further, it was suspected that the
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behavior of the concrete struts, in terms of deforma-
tion and ultimate strength, was different than that of
concrete loaded in uniaxial compression.

Much experimental and analytical research has been
conducted recently at the University of Toronto toward
formulating a more rational model. In particular, an
extensive experimental program’ was undertaken in-
volving the testing of reinforced concrete panels under
well defined general two-dimensional stress states, n-
cluding shear. From the data acquired, the modified
compression field theory® was developed. In this theo-
retical model, cracked concrete is treated as a new ma-
terial with its own stress-strain characteristics. Equilib-
rium, compatibility, and constitutive relationships are
formulated in terms of average stresses and average
strains. Variability in the angle of inclination of the
struts and strain-softening effects in the response of the
concrete are taken into account. Consideration is also
given to local stress conditions at crack locations. The
resulting theory is capable of predicting accurately the
response of reinforced concrete membrane elements
subjected to in-plane shear and axial loads.

The concepts of the modified compression field the-
ory can be applied to the analysis of reinforced con-
crete beams subjected to shear, moment, and axial
load. Although too complex for regular use in the de-
sign of simple beams, the procedure has value in its
ability to provide a rational method of analysis and de-
sign for members having unusual or complex geometry
or loading, or whenever a more thorough analysis is
warranted.

ANALYTICAL MODEL

The modified compression field theory relates aver-
age stresses to average strains in a cracked reinforced
concrete element, satisfying conditions of compatibility
and equilibrium. Unique states of stress and strain are
assumed to exist in an element under load, as defined
in Fig. 2. The,strain conditions, both in the concrete
and in the reinforcement, are summarized in the fol-
lowing relationship

€.—€ € —¢€
tan’) = —— = — 1)
€, 6 € — €
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Similarly, the stress conditions in the concrete are re-
lated as follows

S = fu — Vo, /tand, 2)

So = fu — Voo - tanb, 3
and

fa = Vo, - (tanf, + 1/tand) 4)

The stresses in the concrete, together with those in the
reinforcement, must balance the external forces applied
to the concrete element. A complete discussion is given
in Reference 6.

Constitutive relations are required to determine the
average stresses from the average strains. For concrete
in compression, the relationship used is

2(2)- (&)

chmaY o l — <
fl T 0.8-0.34¢,/¢,

fo = f(-z,,,,,x : ()]

where

1.0 6)
For concrete in tension, prior to cracking, the relation-
ship is

fc] =E ‘¢ 7N
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Fig. 2 — Average stress and strain conditions in a rein-
forced concrete element
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The relationship suggested for response after cracking
(i.e., tension stiffening effect) is

Jo

Jo = 1 + 200,

)

Further, it is assumed that the inclination of the prin-
cipal stress coincides with that of the principal strain;
that is, that

g =6, (10)

For the reinforcing steel, a bilinear uniaxial stress-strain
relationship is adopted

fo=E e <[ (11

The constitutive relations are summarized in Fig. 3.
The previous formulations can be used in analyzing
a reinforced or prestressed concrete beam by consider-
ing the beam to be composed of a series of concrete
layers and longitudinal steel elements (see Fig. 4). Each
concrete layer is then defined by its individual width b,
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Fig. 3 — Constitutive relations for concrete and rein-
forcing steel

depth A, amount of transverse reinforcement p,, and
position relative to the top of the beam y,. The longi-
tudinal steel elements are defined by their cross-sec-
tional area A,, initial prestrain Ag,, yield strength f,,,
and position relative to the top of the beam y,. Proper-
ties common to the entire beam cross section can in-
clude the concrete cylinder strength f!, concrete strain
at peak stress ¢/, yield strength of the transverse rein-
forcement f,,, and Young’s modulus for steel E,. This
layered model permits the analysis of beams having un-
usual cross-sectional shapes or reinforcing details.

The concrete layers and longitudinal steel elements
are analyzed individually, although conditions of com-
patibility and equilibrium must be satisfied for the sec-
tion as a whole. The only section compatibility require-
ment used is that plane sections remain plane. Thus, the
longitudinal strain in each of the concrete layers and
reinforcing bar elements will be fixed by defining the
top and bottom fiber strains in the section, i.e.

(€, + €)
=t "y 12
€, = € 7 y (12)

Force equilibrium requirements include: (1) a balancing
of the shear, moment, and axial load acting on the sec-
tion; and (2) horizontal shear equilibrium. Beyond this,
uniform stress conditions are assumed to exist in each
layer and element. Conditions of compatibility and
equilibrium in the concrete layers are dictated by the
modified compression field theory, and these also must
be satisfied.

The analytical procedure requires that estimates be
made of (1) the longitudinal strain distribution; and (2)
the shear stress distribution across the section. Each in-
dividual concrete layer and reinforcing bar element can
then be analyzed separately. The stresses in the longi-
tudinal reinforcing bar elements can be determined di-
rectly from the longitudinal strains. For most analyses,
a bilinear stress-strain relationship is adequate in deter-
mining the longitudinal steel stresses f,.. The longitudi-
nal stresses in the concrete layers are somewhat more
difficult to determine. Given the longitudinal strain and
normal shear stress acting on a particular layer, the re-
maining conditions of stress and strain must be deter-
mined according to the formulations of the modified
compression field theory. In doing so, the concrete
longitudinal compressive stress £, is found for each
layer.

Member Concrete Layers
Cross—Section

Rebar Elements

Longitudinal
Strain Gradient

Shear Flow
distribution

Fig. 4 — Beam section analyzed using layered model; estimates of longitudinal
strain and shear flow distributions are required
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Thus, for a given longitudinal strain and shear flow
distribution, longitudinal stresses are determined for
each of the concrete layers and reinforcing bar ele-
ments. The resultant of these stresses must balance the
applied sectional forces. For a beam section discretized
into m concrete layers and n longitudinal reinforcing
bar elements, the elemental stresses must satisfy the
following conditions

m "

E o bl : hl + E .f\’\j/ : As;/ = N (13)
i1

i=1

LS b b u=D)
i1

n

+ E .fs_\/ ) A\;; (ysj _y) M (14)
j=1

m

Lv, b -h=V (15)
I

i=

where N, M, and V are the axial load, moment, and
shear acting about the centroid of the section. If the
conditions are not satisfied, it becomes necessary to
readjust the assumed longitudinal strain gradient and
repeat the analysis until equilibrium is achieved.

The problem of determining the correct shear stress
distribution is solved by analyzing a second section of
the beam, a small distance removed from the first. Both
sections are analyzed for the same shear stress distri-
bution, satisfying section equilibrium in each case. The
assumed shear stresses are then checked by examining
the static equilibrium of each layer.

Let C, denote the compressive force acting on the
face of concrete layer i at Section 1; C, denotes the
force acting on the face at Section 2. Sections 1 and 2
are separated by a distance S (S is usually taken as
about H/6). The compressive force C; is determined
primarily by the concrete longitudinal compressive
stress. However, if a longitudinal reinforcing bar ele-
ment is contained within the concrete layer, then the
force in the reinforcing bar C, must also be included.
Thus

Cl = ﬂ'.\’! : b’ : h! + CV (16)

Now, consider concrete layer k, shown in Fig. 5. The
horizontal shear forces acting on the layer F,, and F,
are determined as follows

£(C, - Co) (17)

i=1

Fi

il

F,

Fkrl + CA! - CA'Z (18)

The normal shear force V, can then be determined from
rotational equilibrium of the free body shown in Fig. 5
as

(F. + F.) I
LS 19
* 2 S (19)
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Hence, the average shear stress acting on the vertical
face of concrete layer k is calculated as

(20)

The shear stresses calculated in the manner just de-
scribed should correspond, in the case of each layer, to
the shear stresses assumed initially. 1f they do not, then
the assumed shear flow distribution must be revised and
the analysis repeated.

The analytical procedure is schematically summa-
rized in Fig. 6. A solution algorithm is given in Refer-
ence 5.

APPROXIMATE ANALYSES

Analyses conducted using the rigorous procedure just
described have often shown the shear flow distribu-
tions in typical members to be fairly uniform across the
area between the top and bottom reinforcement. This
observation leads to a method of approximate analysis
that allows for much quicker computation of section
response. For a given beam cross section, an area of
concrete extending between the centroids of the top and
bottom reinforcement, and equal in width to the spalled
web thickness, can be considered effective. Shear flows
are then assumed to be uniformly distributed over this
area. The subsequent steps in the solution procedure
are identical to the more rigorous approach. But, by
eliminating the iterations on shear flow estimates, the
computational effort can be reduced by as much as an
order of magnitude.

An alternative method of approximate analysis in-
volves making an assumption regarding the normal
shear strain through the depth of the section. Experi-
ence has shown that the shear strain through the sec-
tion often varies in a nearly parabolic fashion, al-
though it is highly dependent on the loading conditions
and section details. If a parabolic shear strain distribu-
tion is assumed, then the analysis of a second section of

Section 2

Section 2 Section 1
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o —Fs ;
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: S=d/6 —~i

1<k <m

Fig. 5 — Free-body diagram for concrete layer k
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[ Specify cross-section properties ]

I Specify section loading j
1
[Estimate shear flow distribution I‘_

Estimate longitudinal strain
gradient N

Compute strain/stress for
longitudinal rebar elements

i

Compute strain/stress for each
concrete layer using Modified
Compression Field Theory

i

LCompute resulting section forcesl

Is
section equilibrium
satisfied?

—'—t Repeat calculations for section 2 ] *

!

Compute resulting shear flow *
distribution

Is
shear flow distribution
as assumed?

[ Extract required data

* Not required for
approximate analysis

Fig. 6 — Solution procedure for beam analysis model

the beam can again be eliminated and computation time
reduced. Further, if the complete shear force-deforma-
tion response curve is being computed for a beam, then
the peak shear strain parameter (i.e., shear strain at the
center of the section) can be monotonically increased
and the resulting shear force calculated directly. This
eliminates another set of iterative calculations and fur-
ther speeds up computation.

To compare the relative accuracy of the two approx-
imate methods to the more rigorous procedure, con-
sider the interaction diagrams shown in Fig. 7. The in-
teractions between shear capacity and flexural capacity
for three typical beams are shown — a solid reinforced
concrete beam, a hollow beam, and a prestressed
T-beam. For each, the interaction curves were deter-
mined using all three analytical procedures.

In general, the approximate procedures give results
that are fairly similar to those obtained using the more
rigorous dual-section analysis. This is particularly true
under conditions involving low flexure and axial loads.
As the flexural moments increase, the predictions tend
to diverge somewhat with the constant shear flow as-
sumption generally yielding conservative results and the
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Fig. 7 — Moment-shear interaction diagrams compar-
ing approximate procedures

parabolic shear strain assumption resulting in uncon-
servative predictions. Inaccuracies obtained with the
parabolic shear strain assumption are the result of an
overestimated concentration of shear stress in the
compression regions of the section. The constant shear
flow assumption, on the other hand, overestimates the
shear stresses in the tension regions, resulting in a
weaker response. This is illustrated in Fig. 8, which
shows the shear flow and strain distributions deter-
mined for a solid beam section [see Fig. 7(a)] when
subjected to a shear force of 600 kN (135 kips) and a
moment of 600 kN-m (442 ft-kips).
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Fig. 8 — Shear flow and strain distribution for solid
beam subjected to loads of V=600 kN and M = 600
KN-m

It should also be noted in Fig. 7 that, for the two
symmetrically reinforced sections, all three methods
predict that increasing the moment decreases the shear
capacity. For the unsymmetrical T-beam, however, in-
creasing the moment first results in an increase in shear
strength. This is due to the flexural compression help-
ing the weaker top flange resist the tensions caused by
shear.

As well as being able to reasonably predict ultimate
load, the approximate procedures give a fairly accurate

Table 1 — Test beam properties
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Fig. 9 — Shear load-deformation response of Beam
SA3 obtained using alternative procedures

prediction of load-deformation response. Fig. 9 shows
the predicted load-deformation response curves for
Beam SA3 (see Table 1) under three different loading
conditions. In the case of pure shear, very little differ-
ence can be seen in the response computed using the
three alternative methods. For the condition of com-
bined shear and moment, the constant shear flow as-
sumption results in slightly stiffer response, whereas the
response computed using the parabolic shear strain as-
sumption is significantly stiffer. Conversely, in the case
of axial compression and shear, the parabolic shear
strain assumption results in a lower cracking load and,
consequently, a weaker shear stiffness in the interme-
diate load range.

COMPARISON WITH EXPERIMENTAL RESULTS
For corroboration, the analytical model was used to
determine the theoretical response of several beams

o Longitudinal
Dimensions Concrete Shear reinforcement reinforcement P/S reinforcement
Outside, Void, S € S, S ‘ S A, S Ae,,
Beam mm mm MPa x 107 Bars mm MP Bars MP mm? MPa x 107
SA3 | 305 x 610 | 152 x 406 | 40.0 | 280 | No.3 | 724 | 373 | '7-No-9 ) M3 _ - —
SA4 | 305 x 610 | 152x 406 | 40.0 | 280 | No.3 | 724 | 373 | Z-No-3 M5 - —
SK1 305 x 610 — 26.9 2.25 No.3 | 100 400 8- No. 8 442 1540 | 1450 4.82
SKk2 305 x 610 | 121 x 381 | 26.9 2.25 No.3 | 100 400 8- No. 8 442 1540 | 1450 4.82
SK3 305 x 610 — 28.2 2.20 No.3 | 100 400 8-No.8 | 442 — — —
SK4 305 x 610 | 121 x 381 | 28.2 2.20 No.3 | 100 | 400 16 - No. 8 442 — — —
~ sPO 305 x 610 | 152 x 406 | 25.0 2.30 No.3 | 150 373 16 -No. 8 | 421 — — —
SPI 305 x 610 | 152 x 406 | 33.5 2.30 No.3 | 150 373 12-No.7 | 421 510 | 1450 4.21
SP2 305 x 610 | 152 x 406 | 32.0 2.00 No.3 | 150 373 | 12-No.7 421 1010 | 1450 4
SP3 305 x 610 | 152 x 406 | 32.2 2.00 No.3 | 150 373 12 - No. 7 421 1520 | 1450 4.26
SM1 305 x 610 | 152 x 406 | 29.0 240 | No.3 | 175 | 424 12- No. 7 452 — — —
CF1 305 x 610 | 152 x 406 | 38.6 300 | No.3 | 150 367 6 - No. 3 367 930 | 1450 5.17
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Fig. 10 — Comparison of predicted and measured load-deformation response of

University of Toronto beams

tested by various researchers at the University of To-
ronto.” The beams selected for investigation were those
that failed primarily due to the action of high shear
stresses. All were 12 by 24 in. (305 by 610 mm) in cross
section. Section designs ranged from solid to hollow,
from prestressed to nonprestressed. Several different
test methods were used to apply load but, in all cases,
the moment was zero at the midpoint of the test length
of the beam. In addition, all of the beams were well in-
strumented and detailed strain readings were taken
during the testing. The material and section properties
for the 12 specimens considered are summarized in Ta-
ble 1.

For the theoretical analyses, spalled web dimensions
(to the outside of the stirrups) were used throughout. In
the cases where prestressing ducts were present, one-
half of the width of the duct was subtracted from the
web width for the layer containing the duct. The ana-
lytical results were compared to the experimental data
for the central regions of each test specimen where the
moments were close to zero.

The theoretical and experimental shear response
curves for each specimen are compared in Fig. 10. In
general, it can be seen that the experimental and theo-
retical response curves agree well. Precracking, post-
cracking, and ultimate load-deformation response are
well modeled, particularly for those specimens that
were not precracked prior to testing. Specimens SK1
and SK2 were the least accurately predicted. These
beams failed at loads about 15 percent less than the
predicted capacities, with severe crushing and spalling
of concrete over the prestressing ducts evident. The
concrete elsewhere in the beams was relatively undam-
aged. For these beams, the practice of partially reduc-
ing the effective width of the webs did not completely
account for the detrimental effects caused by the
smooth, rigid steel tubes used as ducts.

264

Fig. 11(a) compares the theoretical and experimental
ultimate shear strengths for the Toronto specimens,
showing good correlation between the two. The ratio of
experimental to theoretical strengths has a mean of 1.01
and a coefficient of variation of 9.9 percent.

An extensive series of beam shear tests was con-
ducted by Haddadin, Hong, and Mattock’ at the Uni-
versity of Washington. The beam specimens tested were
T-sections, simply supported and with constant axial
loads applied at the ends. Shear loads were introduced
through single-point loading at midspan. Variables in-
cluded the span length, the shear reinforcement ratio,
and the level of axial force applied. Thirty-five speci-
mens are reported in the Series I test program. These
specimens were analyzed using the analytical procedure
described, and the predicted ultimate strengths are
compared to the experimental values in Fig. 11(b). In
general, very good agreement is obtained. The ratio of
experimental to predicted strength has a mean of 1.01
and a coefficient of variation of 15 percent. If the six
beams that did not contain shear reinforcement are ex-
cluded, then the ratio of experimental to predicted
strength has a mean of 1.04 and a coefficient of varia-
tion of 9.3 percent.

Elzanaty, Nilson, and Slate® report tests conducted at
Cornell University involving beams constructed from
high-strength concrete. Two series of tests are re-
ported, one involving beams having a T-section and the
other an I-section. In both cases, high axial compres-
sive stresses were induced through prestressing. Con-
crete strengths ranged from 40 to 74 MPa (5800 to
10,700 psi). Other variables included percentage of
transverse reinforcement and amount of prestressing
force. All beams were simply supported, and subjected
to a two-point loading with a shear span of 1.2 m. The
ultimate strengths predicted for these beams, based on
the modified compression field theory formulations,

ACI Structural Journal / May-June 1988



are compared with the experimental results in Fig.
11(c). The ratio of the experimental to predicted
strengths obtained has a mean of 0.94 and a coefficient
of variation of 4.4 percent. It should be noted, how-
ever, that in making the theoretical calculations, the
tensile strength of the concrete was assumed to be
0.33Jf! MPa (4Jf psi). For high-strength concrete,
this was likely an overestimation of cracking strength
and, thus, contributed to the consistently high pre-
dicted strengths. For Beam CI 17, for example, a pre-
dicted shear strength of 138 kN (31.0 kips) was ob-
tained using f,, = 0.33Jf] MPa, whereas a reanalysis
using £, = 0.17Jf7 MPa (2Jf psi) resulted in a theo-
retical shear strength of 120 kN (27.0 kips). The exper-
imentally obtained value was 129.5 kN (29.1 kips).

The analytical procedure has been shown to give
good results in the experimental studies just described,
as well as others involving a wide range of section de-
tails and loading conditions. However, it must be re-
membered that the response of reinforced concrete in
shear inherently involves a wide scatter and that high
accuracy in prediction of strength should not be ex-
pected or relied upon. Consider, for example, beam
specimens CI 12 and CI 15 reported in Reference 8.
The beam details and loading conditions were identical
except that the strength of the concrete in Beam CI 15
was much higher — 70.4 MPa (10,200 psi) as com-
pared to 40 MPa (5800 psi) for Beam CI 12. Beam
Cl 12 had an ultimate shear strength of 122.4 kN,
whereas Beam CI 15, surprisingly, was lower at 121.0
kN. In all other tests of this series, a higher concrete
strength resulted in a higher shear strength. As a fur-
ther illustration, consider the beam specimens reported
in Reference 9, which were loaded in combined shear,
flexure, and high axial compression. The ultimate
strengths attained were in some cases considerably
higher than the nominal strengths of the members sub-
jected to flexure and axial force alone.

CAPABILITIES AND APPLICATION

The analytical procedure presented enables rational
and comprehensive analyses of reinforced concrete sec-
tions subjected to combined flexure, shear, and axial
load to be performed. The procedure incorporates
compatibility and equilibrium conditions and utilizes
realistic stress-strain relationships for cracked rein-
forced concrete. The model inherently takes into ac-
count the softening of the concrete in compression and
the stiffening effects of cracked concrete in tension,
both major influencing factors. Because of the layered
approach used, the procedure is applicable in the anal-
ysis of members with irregular cross sections. For ex-
ample, it has been used with extremely good results in
the analysis of circular columns tested under high
shear.' Further, the analyses provide complete data re-
garding the load-deformation response, including stress
and strain conditions in the concrete, longitudinal re-
inforcement, and transverse reinforcement at any loca-
tion in the cross section. The shear stress distribution
over the cross section is determined as well. The ana-
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Fig. 12 — Shear-axial load interaction diagram show-
ing various aspects of response

lytical model can be applied to a wide range of cross
sections and reinforcing and loading situations, includ-
ing members without shear reinforcement. In all of
these respects, the procedure is superior to the empiri-
cal formulations currently in use.

As an illustration of the capabilities of the proce-
dure, an analysis was performed of Beam SPO (see Ta-
ble 1 for details). Fig. 12 shows the shear-axial force
interaction diagram determined for the case of zero
moment of this beam. As can be seen, axial compres-
sion considerably increases the ultimate shear capacity
of the section in the absence of high flexural loads. This
pattern of behavior was confirmed in the tests con-
ducted by Mattock and Wang.® Axial tensile forces, as
expected, result in a significant decrease in shear
strength. Also shown in Fig. 12 are the cracking load
envelope and the peak strains in the stirrups ¢, and lon-
gitudinal reinforcement ¢, at various load combina-
tions. The longitudinal strain and the shear flow distri-
butions, at various points along the ultimate load en-
velope, are illustrated also. The shear flows are fairly
uniform between the longitudinal reinforcing bars for
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conditions of pure shear or shear and tension. How-
ever, as axial compression increases, the shear flow
tends to have a more rounded profile. The same is true
of the shear strain distribution. In beam sections with
high flexural loads, the shear flows are concentrated
toward the compression flange.

The analytical procedure described in this paper en-
ables the response of a section of a beam to be pre-
dicted. In predicting the response of an actual beam,
different sections along the length of the beam may
have to be checked. To illustrate this point, consider 12
of the T-beams tested by Haddadin, Hong, and Mat-
tock.” As shown in Fig. 13, these beams were sup-
ported on axles projecting from circular bearing plates
bolted to the beams. As well as providing vertical sup-
port, the axles were used to apply axial load to the
beams. All 12 beams had the same sectional properties
but differed in their span lengths and in the applied ax-
ial loads.

Fig. 14 gives the shear-moment interaction diagrams
for the three different levels of axial load used in Had-
dadin, Hong, and Mattock’s tests. Because the section
used was very unsymmetrically reinforced, a section
with zero moment is predicted to be considerably
weaker than one with a substantial moment. The sec-
tions with applied tension are predicted to be particu-
larly weak in regions of low moment, with the failure
being initiated by yielding of the top longitudinal rein-
forcement.

Also shown in Fig. 14 are 12 horizontal lines that
represent the combinations of shear and moment at
failure for each of the 12 beams. Along the test length
the shear is constant but the moment increases. As the
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Fig. 14 — Shear-moment interaction diagram for Uni-
versity of Washington test beams

load on a given beam is increased, the line representing
the shears and moments along the test length goes
higher. Failure is predicted to occur when one end of
the line reaches the failure envelope (i.e., the interac-
tion diagram). Thus, Beams A3T, B3T and C3T, which
have three different spans, are all predicted to fail at
the same shear because the failures occur near the sup-
port. On the other hand, Beams A3C, B3C, C3C and
D3C are predicted to fail at different shears with the
failure shear becoming smaller as the spans become
longer. It can be seen that the analytical model predicts
well the observed experimental trends.

Because the analytical procedure is a sectional model
that assumes that plane sections remain plane, it is not
capable of predicting the local effects caused by the
support and the loading details. Thus, the beneficial
effects of the transverse compressive stresses intro-
duced by the support are ignored. As a result, the
method will typically underestimate the shear capacity
of regions where a significant portion of the load is
carried by direct strut action. To predict the response of
such regions, models that use more complete compati-
bility conditions (e.g., Reference 11) need to be em-
ployed.

CONCLUSIONS

The modified compression field theory enables real-
istic predictions of the response of reinforced concrete
membrane elements subjected to in-plane shear and ax-
ial forces to be made. It is formulated to satisfy general
conditions of compatibility and equilibrium while in-
corporating realistic constitutive relations for cracked
concrete in tension and in compression, as determined
from extensive test data. Strain softening and tension
stiffening effects, critical factors in determining the re-
sponse of concrete to shear, are intrinsically taken into
account.
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In this paper, the concepts of the modified compres-
sion field theory have been incorporated into an ana-
lytical model for analyzing the response of reinforced
or prestressed concrete beams under combined shear,
moment, and axial loads. The analytical model devel-
oped, based on a layered representation of the beam
cross section and involving an iterative solution proce-
dure for longitudinal strains and shear stress distribu-
tions, allows analysis of unusual or complex beam sec-
tions under wide-ranging load conditions. Various in-
fluencing factors can also be treated in a rational
manner. In cases where more approximate solutions
will suffice, simplifying assumptions can be made that
substantially reduce the computational effort required.
Predictions based on this model have been shown to
agree well with experimental results.

The proposed model provides an enhanced ability to
design and analyze the shear response of beams in a ra-
tional manner, rather than having to rely on restrictive,
narrow-ranging and often overly conservative empirical
formulations. The method is seen as being most useful
in situations where economic or technical considera-
tions warrant that a more thorough analysis be per-
formed than is otherwise obtainable using standard
code procedures.
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NOTATION
= cross-sectional area of prestressing steel
= cross-sectional area of longitudinal reinforcing bar element
= width of concrete layer
= compressive force acting on layer face
= compressive force acting in longitudinal bar
= modulus of elasticity of concrete
= modulus of elasticity of reinforcing steel
= maximum compressive stress observed in a cylinder test
(negative quantity)
= principal tensile stress in concrete
= principal compressive stress in concrete
= concrete cracking stress
= stress in concrete in longitudinal direction
= stress in concrete in transverse direction
= stress in reinforcement
stress in longitudinal reinforcement
= stress in transverse reinforcement
= yield stress of reinforcement
= yield stress of longitudinal reinforcement
= yield stress of transverse reinforcement
shear force on layer surface
= depth of concrete layer
= total depth of beam cross section
= moment acting on beam section
axial force acting on beam section
= spacing between beam cross sections
= shear stress on concrete layer face
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V= shear force acting on beam section

¥y = distance from top of beam section

% = distance from top to centroid of section

€, = principal tensile strain in concrete

€ = principal compressive strain in concrete (negative quantity)

€, = bottom fiber strain in beam section

€ = strain in concrete cylinder at peak stress f' (negative quan-
tity)

€, = strain in reinforcement

€, = top fiber strain in beam section

€, = strain in longitudinal direction

€, = strain in transverse direction

[ = angle of inclination of principal strains

0. = angle of inclination of principal stresses in concrete

0, = reinforcement ratio for steel in transverse direction

Ae, = difference between strain in prestressing tendon and strain in

an adjacent fiber of concrete
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