Di1STURBED STRESS FIELD MODEL FOR
REINFORCED CONCRETE: VALIDATION

By F. J. Vecchio,' D. Lai,> W. Shim,’ and J. Ng*

ABSTRACT: The results of analytical investigations are presented supporting the disturbed stress field model
as a viable conceptual model for describing the behavior of cracked reinforced concrete elements. The theory
is shown to be phenomenologically more correct, relative to typical fixed-crack or rotating-crack models, in its
representation of the rotation of stress and strain fields in cracked concrete. The inclusion of rigid slip along
crack surfaces allows for a divergence between principal stress and principal strain directions in the concrete,
with the rotation of stresses and crack directions shown to typically lag behind that of strains. This behavior is
found to be consistent with experimentally observed response. Corroboration with data from beam, panel, and
shear wall test specimens shows the theory to accurately model response over a wide range of conditions. In
general, results are improved relative to those obtained from the modified compression field theory. Current
deficiencies in the theory are identified, and possible future work is discussed.

INTRODUCTION

The disturbed stress field model (DSFM) was recently pro-
posed as an alternative model for representing the behavior of
cracked reinforced concrete elements. It is a smeared rotating
crack model that explicitly allows for rigid slip along crack
interfaces in its development of compatibility, equilibrium, and
constitutive relations. The inclusion of crack slip results in a
“delayed” rotation of cracks; that is, where the rotation of the
principal stress directions typically lags behind the rotation of
the principal strains. As such, the theory occupies a middle
ground between full rotating-crack models and fixed-crack
models. Various alternative approaches are possible for rep-
resenting crack slip deformations, including explicit crack
shear stress-slip relations, fixed lag-angle relationships, and
hybrid formulations combining the two. Full details regarding
the theoretical formulation, and its implementation into non-
linear finite-element procedures, were provided previously in
the literature (Vecchio 2000, 2001).

The predecessor of the DSFM is the modified compression
field theory (MCFT), developed by Vecchio and Collins (1982)
some 20 years ago and essentially unchanged since. The
MCEFT is a full rotating-crack model built around constitutive
relations derived from extensive experimental investigations.
As previously discussed, the MCFT provides good accuracy
in the modeling of cracked reinforced concrete structures over
a wide range of conditions. However, under some outlying
conditions, the MCFT has shown to suffer from reduced ac-
curacy.

Relative to the MCFT, the DSFM attempts to provide a
better phenomenological representation of the behavior of con-
crete by explicitly allowing for crack shear slip in the descrip-
tion of element deformation. It dispenses with the condition
that principal stress and principal strain directions in the con-
crete remain coincident and removes a crack shear check that
proved troublesome in readings of the MCFT by others. Fur-
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thermore, in representing the softening of cracked concrete in
compression, it reduces the influence ascribable to transverse
cracking strains to a level comparable to that reported by other
researchers (Vecchio 2001).

In support of the theoretical formulations, this paper pro-
vides further insight into the behavior mechanisms implicit in
the proposed model. Corroboration of the model’s accuracy is
also provided by examining data from several series of test
specimens demonstrating improved breadth in accuracy rela-
tive to the MCFT.

GENERAL BEHAVIOR

To identify some important behavior tendencies and to show
how they are represented in the proposed formulation, consider
Panel PV10 tested by Vecchio and Collins (1986). This panel
was orthogonally reinforced (p, = 1.8%, p, = 1.0%) and sub-
jected to monotonic pure shear. Shown in Fig. 1 are photo-
graphs of the test panel at various stages of loading; note that
the reinforcement directions, and hence the reference x,y-axes,
are aligned with the panel edges. Given in Fig. 2 are the cor-
responding load-deformation plots obtained from test data.
Figs. 2(a and b) show the measured strains in the longitudinal
(x) and transverse (y) reinforcement directions. Fig. 2(c) gives
the measured (apparent) normal shear strain response, and Fig.
2(d) shows the calculated inclinations of the stress (6,) and
strain (0,) fields.

At a load of v = 3.5 MPa [load stage 5; Fig. 1(a)], the
transverse reinforcement is on the verge of yielding. The in-
clination of the strain field at this point has increased to about
50°, as determined directly from strain measurements on the
panel. The inclination of the stress field, ailso determined from
the test data, essentially remains at 45°. This is significant
when coupled with the observation that, as seen in Fig. 1(a),
the inclination of the cracks shows no apparent deviation from
45° relative to the x-axis. At a load of v = 3.97 MPa [load
stage 7; Fig. 1(b)], the panel reaches its ultimate load capacity,
and the transverse reinforcement is well into yielding. The
inclination of the measured principal strains has increased to
55°, while the orientation of the principal stresses has begun
to change and is at approximately 47°. In Fig. 1(b), a slight
reorientation of the crack direction is becoming discernible.
Figs. 1(c and d) show the accelerated reorientation of cracks
during postpeak response and the final failure stage. This grad-
ual rotation of crack direction was observed, in general, to be
more pronounced in elements containing lesser amounts of
transverse reinforcement relative to the amounts of longitudi-
nal reinforcement present.

Observations that can be drawn from the observed behavior-



FIG. 1. Specimen PV10: (a) Prior to Yielding of Transverse Re-
inforcement; (b) at Ultimate Load Capacity; (c) Postpeak Con-

dition; (d) Failure Condition
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FIG. 2. Comparison of Load-Deformation Responses for
PV10: (a) Longitudinal Reinforcement Strains; (b) Transverse
Reinforcement Strains; (c) Shear Strain; (d) Inclination of Prin-
cipal Stress and Apparent Principal Strain
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of Panel PV10, and from the large number of other panels
tested, include the following:

1. Where structural and loading conditions give rise to a
reorientation of stress fields, the rotation of the stress
field normally lags behind that of the strain field. This is
contrary to the assumption made in full rotating-crack
models, which typically enforce a coaxiality of stresses
and strains.

2. While the rotation of the stress field is delayed some-
what, it eventually undergoes a gradual and progressive
reorientation as existing cracks propagate and new cracks
develop. This is contrary to the assumption typically
made in fixed-crack models; that is, that crack angles
largely remain fixed until, possibly, new cracks form at
some alternate inclination.

3. The prevailing direction of the cracks in the concrete
seems to correspond closely to the inclination of the cal-
culated average principal stresses. Again, this is contrary
to what is normally assumed in fixed-crack models.

The observations above are indicative of a crack slip com-
ponent contributing to the total deformations occurring in the
element. This was apparent in the test specimens from the
observed localized ridging and crushing of concrete along
crack surfaces, and from relative displacements measured
across cracks. That the DSFM attempts to capture this aspect
of behavior, while the MCFT does not, is significant. Shown
in Fig. 2 are the responses predicted for Panel PV10 using the
DSFM and MCFT formulations. The DSFM provides an ac-
curate portrayal of the behavior of the element. While the
MCEFT provides an almost equally accurate calculation of the
strength and load-deformation response of the element, it does
not completely represent the observed crack and failure re-
sponse. As will be shown later, the inclusion of rigid slip along
the cracks is an important aspect in modeling the behavior of
some reinforced concrete elements.

PANEL ELEMENTS

Three series of test panels were examined: the PV-, PB-,
and PA-/PHS-Series specimens. The PV-Series panels, tested
by Vecchio and Collins (1982), were the original panels on
which the constitutive models of the MCFT were based. These
panels were generally orthogonally reinforced and subjected
to various conditions of shear and normal stresses. The PB-
Series panels were tested by Bhide and Collins (1989); these
were generally uniaxially reinforced and subjected to various
combinations of uniaxial tension and shear. The PA- and PHS-
Series panels were tested by Vecchio et al. (1994). This last
set involved panels constructed from high strength concrete,
orthogonally reinforced (p, < p,), and subjected to various
combinations of shear and normal stress.

Analyses were performed for all panels using both the
DSFM and the MCFT. The computed shear capacities, and
comparisons to the experimentally determined strengths, are
given in Fig. 3 for the 40 panels examined. The analytical
model based on the DSFM, using the hybrid crack slip model
previously described, produced a mean of 1.02 and a coeffi-
cient of variation (COV) of 9.6% for the ratio of theoretical
to experimental shear strength. This is somewhat better than
the estimates of capacity obtained from the MCFT, which pro-
duced a mean of 1.05 and a COV of 10.3%. In particular, the
MCEFT predictions for the PB-Series panels were consistently
high; on average, overestimating the strength of these uniax-
ially reinforced elements by 14%. The accuracy of the DSFM
calculations was generally equally good for all three series of
panels, although the PB-Series panels showed more scatter. It
should be noted, however, that several of the panels in this
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Panel A P Py Loading Vu-exp Vie-theor/Vu-exp

(MPa) (%) (%) g, :0,:0 (MPa) MCFT DSFM
PV10 14.5 1.79 1.00 0:0:1 3.97 0.947 0.957
PV11 15.6 1.79 1.31 0:0:1 3.56 1.011 1.034
PV12 16.0 1.79 0.45 0:0:1 3.13 1.016 0.958
PV16 21.7 0.74 0.74 0:0:1 214 0.935 0.935
PV18 19.5 1.79 0.32 0:0:1 3.04 1.138 1.085
PV19 19.0 1.79 0.71 0:0:1 3.95 1.043 1.023
PV20 19.6 1.79 0.89 0:0:1 4.26 1.042 1.042
PV21 19.5 1.79 1.30 0:0:1 5.03 1.002 1.049
Pv22 19.6 1.79 1.53 0:0:1 6.07 1.023 1.107

Pv23 205 1.79 1.79 <0.39:-0.39:1 8.87 0.812 0.902
PV25 193 179 1.79 -0.69:-0.69:1 9.12 0.816 0.886
PV27 205 179 1.79 0:0:1 6.35 1.023 1.164
Pv28 190 1.79 1.79 0.32:0.32:1 5.80 0.985 1.125

Vecchio and Collins Panels Mean 0.984 1.021
COV(%) 9.2 8.6

PA1 499 1.65 0.82 0:0:1 6.34 0974 0.979
PA2 430 1.65 0.82 0:0:1 6.22 0.993 0.998
PHS1 722 323 0.00 0:0:1 295 1.035 0.976
PHS2 66.1 3.23 0.41 0:0:1 6.66 0.970 0.912
PHS3 584 3.23 0.82 0:0:1 8.19 1.109 1.103

0.25:0.25:1 6.91 1.014 0.976
0.25:0.25:1 4.81 0910 0.855
PHS6 497  3.23 0.41 -0.25:-0.25:1 9.89 0.890 0.890
PHS7 536 323 0.82 <0.25:-0.25:1  10.30 1105 1.152
PHS8 559 323 1.24 0:0:1 10.80 0.991 1.024
PHS9 56.0 3.23 0.41 <0.25:-0.25:1 9.37 1.009 0.998
PHS10 514 323 1.24 0.25:0.25:1 8.58 0.998 1.007

Aspiotis Panels Mean 1.000 0.989
COV(%) 6.5 84

PHS4 68.5 3.23 0.82
PHS5 521 3.23 0.41

PB6 176 1.09 0.00 1:0:1 1.15 1176 1.086
PB8 204 1.09 0.00 2.98:0:-1 0.80 1.238 1.206
PB10 240 1.09 0.00 5.94:0:-1 0.56 1200 1.193
PB14 411 2.02 0.00 3.01:0:-1 1.54 1.042 0.927
PB16 417  2.02 0.00 1.96:0:-1 1.42 1.197 1.176
PB17 416  2.02 0.00 5.93:0:-1 1.22 1.023 0.953
PB18 253 2.20 0.00 0:0:1 1.72 1221 1.221
PB19 200 220 0.00 1.01:0:-1 1.28 1305 1.142
PB20 217 220 0.00 2.01:0:-1 1.42 1.085 0.953
PB21 218 220 0.00 3.08:0:-1 1.42 1.000 0.874
PB22 176 220 0.00 6.09:0:-1 1.03 1.080 0.972
PB29 416  2.02 0.00 2.02:0:-1 1.49 1188 1.054
PB30 404  2.02 0.00 2.96:0:-1 1.48 1.088 0.961
PB31 434 2.02 0.00 5.78:0:-1 1.15 1.092 1.017
PB32 §7.7 220 0.00 3.01:0:-1 1.49 1114 1.023

Bhide Panels Mean 1.136 1.051
COV(%) 7.8 10.8
Total: Mean 1.046 1.022

COV(%) 10.3 9.6

FIG. 3. Results of Analyses of Panel Specimens

series failed at shear stresses at or marginally above the crack-
ing load; hence, accuracy was significantly dependent on the
estimate of the concrete tensile strength.

Load-deformation plots for the representative Panels PV23,
PB20, PV20, and PHS8 are given in Fig. 4. Note that Panel
PV23 was subjected to biaxial compression and shear and ex-
perienced only minor cracking prior to sustaining a crushing/
shear failure of the concrete. Prior to failure, the panel expe-
rienced no yielding of the reinforcement nor rotation of the
crack direction. Panel PB20, being uniaxially reinforced, ex-
perienced pronounced rotation of the crack directions before
reaching ultimate capacity. Panels PV20 and PHS8 were bi-
axially reinforced, but due to the dissimilarities between re-
inforcement ratios, experienced pronounced shear slip on the
cracks after yielding of the transverse reinforcement. It is sug-
gested here that Panels PV23 and PB20 represent the two ex-
tremes in the range of structural conditions encountered in
cracked reinforced concrete panel elements. Panels PV20 and
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FIG. 4. Load-Deformation Plots for Representative Panels: (a)
Panel PV23; (b) Panel PB20; (c) Panel PV20; (d) Panel PHS8

PHSS8 represent the more typical panel element; the former
with normal strength concrete and the latter with high strength
concrete.

In Fig. 4, the responses ascribed to the DSFM are those
determined using the hybrid crack slip model. In general, it
can be noted that the load-deformation responses show rea-
sonable agreement with the experimental values. The predicted
strength and stiffness of Panel PV23 is lower than measured,
but this appears to be somewhat related to an underestimate
of the cracking stress. For Panel PB20, the postcracking stiff-
ness, ductility and ultimate strength are all reasonably well
represented. For both panels, the DSFM-derived responses are
significantly improved over those obtained from the MCFT.
The responses obtained for Panels PV20 and PHSS, showing
excellent correlation, are more typical of the accurate corre-
lation obtained for orthogonally reinforced elements in which
one reinforcement component yields but the other does not.
Here, all aspects of the response are well represented by the
DSFM, as seen in Fig. 5 for Panel PV20. Note that, for these
types of elements, the MCFT also provides excellent correla-
tions.

SHEAR BEAMS

The MCFT has been shown to provide accurate simulations
of the response of beams containing shear reinforcement of
amounts equal to 0.2% or greater (Vecchio and Collins 1988).
For such beams, the correlations obtained from DSFM anal-
yses will be essentially similar. However, for beams containing
little or no shear reinforcement, or for beams simultaneously
subjected to axial compression (and hence experiencing min-
imal cracking), the results from MCFT have shown reduced
accuracy (Vecchio 1999). Furthermore, as has been discussed,
it is under such conditions that the results of the DSFM di-
verge from those of the MCFT. Hence, the corroboration stud-
ies presented here concentrate on these beam types.

Three series of beams were considered. First, the set of 12
beams tested by Bresler and Scordelis (1963), often used as a
benchmark, were modeled because they cover a representative
range of conditions in terms of reinforcement amounts, shear
spans, and failure modes. The second set modeled involved
18 beams tested by Stanik and Collins (1998). This set is par-
ticularly challenging in terms of analytical modeling for the
following reasons: (1) the beams were large-scale, with the
majority being 1,000 mm deep, raising the prospect of size
effects; (2) the beams had a relatively short shear span ratio
—a condition where reorientation of crack direction can sig-
nificantly alter the load-resisting mechanisms; (3) the majority
of the beams contained no shear reinforcement; and (4) several
of the beams were constructed using high strength concrete.
With respect to the latter condition, Stanik and Collins have
noted that the strength of shear-critical high strength concrete
beams is significantly lower than what current codes predict.
The third series of specimens considered involves a series of
strip beams, subjected to various combinations of axial com-
pression and transverse shear, tested by Gupta (1998). This
series will test the analytical procedures under conditions
where cracking is minimal and where capacity is governed by
the formation of a single dominant crack.

The beams were modeled for finite-element analysis taking
advantage of symmetry to model half spans. With the Bresler
and Scordelis beams, a mesh of 32 X 9 constant strain (eight
degrees of freedom) rectangular elements were used for the
7.32-m-span beams; 39 X 9 elements for the 9.14-m-span
beams; and 40 X 9 elements for the 12.8-m-span beams. The
Stanik beams were modeled with a 40 X 12 element mesh,
and the Gupta beams utilized an 18 X 10 element mesh. All
material properties used were as given in the respective ref-
erences except that the concrete cracking stress was approxi-
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mated using 0.65(f.)°*. The Bresler-Scordelis beams and the
Gupta beams were subjected to force-controlled loading, with
shear load increments of 2.5 and 5.0 kN, respectively. The
Stanik beams were subjected to displacement-controlled load-
ing, with midspan displacement increments of 0.25 mm im-
posed.

The behavior of the Bresler-Scordelis beams was modeled
reasonably well, although the tendency was to underestimate
the load capacity (Fig. 6). This tendency was likely due to two
factors. First, for the beams containing no shear reinforcement
(OA1, OA2, and OA3), the computed shear capacity of the
beams was highly dependent on the concrete cracking stress.
The values used were lower-bound estimates and were signif-
icantly less than the moduli of rupture reported by Bresler and
Scordelis. Second, many of the remaining beams were over-
reinforced in flexure and ultimately sustained crushing on the
compression face but, in some cases (e.g., A2), were able to
achieve capacities well above the theoretical pure flexure
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strength. In the analyses of these beams, numerical difficulties
were encountered due to crushing of concrete in the vicinity
of the top loading plate, resulting in reduced theoretical load
capacities. Nevertheless, the typical load-deformation re-
sponses shown in Fig. 7 indicate good correlation between the
experimental behavior and that calculated using the DSFM.
The computed responses obtained using the MCFT, also
shown in Fig. 7, provide equally good correlation for this rep-
resentative set of beams.

The computed responses for the Stanik beams showed more
scatter, owing to the uncommon characteristics of the test
specimens as previously discussed. From Figs. 6 and 8, it can
be seen that, while both the DSFM and MCFT had the ten-
dency to overestimate strengths, the accuracy was somewhat
improved with the DSFM. However, what is perhaps more
significant is the better representation of the failure mecha-
nism. With the DSFM, there is a reduced ability for the con-
crete compression struts to reorient themselves such as to pro-



Vu-theor

V“'“P (kN) Vu-theor/! Vu-a;v
Beam (kN)
DSFM MCFT ACI DSFM MCFT ACI

BM100 343 346.7 3894 4243 1.011 1.135 1237
BM100D 462 431.6 466.5 4243 0.934 1.010 0.918
BN100 192 1758 191.1 2819 0.916 0.995 1.468
BN100D 258 2754 3123 2819 1.067 1.210 1.093
UM100 750 759.2 758.0 4139 1.012 1.012 0.552
UM1000 910 8354 8926 413.9 0.918 0.981 0.455
UN100 593 784.6 8252 3022 1.323 1.392 0.510
UN100D 637 7742 8294 3022 1.215 1.302 0474
WM100C 699 5853 769.6 1177.0 0.837 1.101 1.684
WM100D 834 837.1 968.7 1142.0 1004 1.162 1.368
BRL100 164 199.6 204.5 382.9 1.217 1.247 2335
BRH100 357 2176 366.5 3829 0.610 1.027 1.073
BH100 193 2795 250.3 3829 1.448 1.297 1.984
BH100D 281 3559 4241 3829 1.267 1.509 1.363
BH50 132 1149 1326 186.3 0.870 1.005 1.411
BH50D 193 175.0 1949 186.3 0.907 1.010 0.965
BN50 132 926 104.7 136.8 0.702 0.793 1.036
BNSOD 163 1381 1500 136.8 0.847 0.920 0.839
Stanik Beams Mean 1.006 1.117 1.154

COV(%) 217 162 449
OA1 166.5 147.2 161.7 112.6 0.884 0.971 0.676
OA2 178.0 130.3 143.8 114.9 0.732 0.808 0.645
OA3 189.0 114 1273 1444 0.589 0.674 0.764
A1l 233.5 2441 2405 163.4 1.045 1.030 0.700
A2 2445 201.7 205.3 1622 0.825 0.840 0.663
A3 2335 179.7 191.0 1875 0.770 0.818 0.803
B1 222.0 2227 2163 1388 1.003 0.974 0.625
B2 200.0 167.0 171.9 1364 0.835 0.860 0.682
B3 178.0 164.1 183.2 159.6 0.922 1.029 0.89
c1 155.5 167.9 1648 1113 1.080 1.060 0.716
c2 162.0 1320 137.6 103.8 0.815 0.849 0.641
Cc3 135.5 134.8 1426 1158 0.995 1.052 0.855
Bresler and Scordelis Beams Mean 0.875 0.914 0.722

COV(%) 163 134 122
PC1 437 490 595 359 1121 1.362 0.822
PC2 863 860 850 1346 0.997 0.985 1.560
PC3 845 685 760 1165 0811 0.899 1.379
PCa 401 390 485 273 0.973 1.209 0.681
PC5 679 945 930 1889 1.392 1370 2.782
PC6 668 715 755 1094 1.070 1.130 1.638
PC7 387 355 400 233 0.917 1.034 0.602
PC8 497 630 610 760 1.268 1.227 1.529
PCO 516 610 610 540" 1.182 1.182 1.047
PC10 726 1020 985 1277 1405 1.357 1.759
PC11 754 1040 1040 900" 1.379 1379 1.194
PC12 490 375 450 262 0.765 0.918 0.535
PC13 680 645 700 982 0.949 1.029 1.444
PC14 686 780 735 700" 1.137 1.071 1.020
PC15 358 385 385 350* 1.075 1.075 0.978
PC16 945 925 930 900* 0.979 0.984 0.952
PC17 707 735 735 660" 1.040 1.040 0.934
PC18 832 760 780 894 0.913 0.938 1.075
PC19 751 770 775 680" 1.025 1.032 0.905
PC20 715 1010 1030 1544 1413 1441 2159
PC21 767 755 810 1116 0984 1.056 1.455
PC22 443 390 430 252 0.880 0.971 0.569
PC23 603 550 590 751 0912 0978 1.245
PC24 528 425 500 277 0.805 0.947 0.525
Gupta Beams Mean 1.058 1.109 1.199

COV(%) 184 15.0 451
Total: Mean 1.000 1.068 1.078

COV(%) 203 169 46.6

* Governed by flexural capacity

FIG. 6. Results of Analyses of Beam Specimens

vide a direct load path to the support. Hence, the failure mode
is one dominated more by transverse shear displacements, re-
sulting from the formation of a single dominant shear crack
and rigid body slip along this crack. With the MCFT, there is
a greater tendency for a splitting crack to form above the bot-
tom longitudinal reinforcement and for a sliding shear failure
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FIG. 7. Comparisons of Load-Deformation Responses for
Typical Bresler-Scordelis Beams

to occur along this crack. These subtle differences are apparent
in the displaced shapes for Beam WM100D shown in Fig. 9.

The behavior of the Gupta beams was typically dominated
by the formation of a principal crack, with failure ensuing
shortly thereafter. With increasing ratios of compression to
shear, behavior became more brittle and somewhat more de-
pendent on the ability of cracks to realign and form direct
struts. The DSFM, in better modeling the delayed rotation of
the cracks, resulted in improved predictions of strength. Direct
measurements of the beam deflections were not obtained be-
cause of the test setup used; hence, comparisons of predicted
and observed load-deformation responses were not possible.
However, the ability of the DSFM to represent rebar strains
and concrete surface strains was found to be reasonably good
at all stages of loading.

For the three sets of beams combined, the ratio of calculated
to observed shear capacity obtained using the DSFM has a
mean of 1.00 and a COV of 20.3%. This is an improvement
to the mean of 1.07 and COV of 16.9% obtained using the
MCFT and significantly better than the 1.08 and 46.6% ob-
tained using the American Concrete Institute (ACI) code for-
mulations.

SHEAR WALLS

To gauge the accuracy of the analysis model under more
common conditions, two series of shear walls tested by Lefas
et al. (1990) were studied. The test program consisted of 13
large-scale walls tested under various conditions of axial and
lateral load. The wall geometries were of two types: the Type
I walls were relatively squat with a height-to-width ratio of
1.0; and the Type II walls were more slender with a height-
to-width ratio of 2.0. In both cases, the walls were of rectan-
gular cross section but contained a more heavily reinforced
concealed column in the edge (flange) regions. The web
regions of the walls were generally reinforced in the vertical
and horizontal directions in accordance with ACI 318 speci-
fications.
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MCFT DSFM
Wall Fu ep Fu theor Fu theor Fu theor Fu theor
(kN) (kN) Fiap (kN) Fiep
SW11 260 279 1.072 281 1.081
Sw12 340 334 0.981 341 1.004
sSw13 330 311 0.943 317 0.960
SwW14 265 262 0.990 270 0.981
SW15 320 296 0.923 303 1.019
SW16 355 367 1.035 372 1.047
SwW17 247 253 1.024 255 1.033
SW21 127 124 0.973 124 0.978
Sw22 150 154 1.024 154 1.024
SW23 180 173 0.962 174 0.964
SW24 120 125 1.039 126 1.049
SW25 150 168 1.120 168 1.118
SW26 123 113 0.922 118 0.960
Mean 0.997 1.011
COV (%) 5.7 53
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FIG. 9. Failure Mode of Stanik Beam WM100D; (a) from Exper-
iment; (b) from DSFM Analysis; (c) from MCFT Analysis

The walls were subjected to constant axial loads combined
with montonically increasing lateral load applied through the
top spreader beam. They exhibited a strong ductile behavior,
developing strengths greater than expected. Lefas et al. re-
ported the development of triaxial compressive stress condi-
tions at the base of the walls and in the concealed columns
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FIG. 10. Results of Analyses of Shear Wall Specimens

and attributed the high shear resistance of the walls to this
condition.

Finite-element analyses were undertaken for the two series
of walls tested. A 340-element mesh was used to represent the
Type I walls, and a 536-element mesh was used for the Type
II walls. The axial load was represented by constant-value
nodal forces applied to the top spreader beam; the lateral load-
ing was applied in the form of imposed horizontal displace-
ment of the spreader beam. Note that no attempt was made to
model base rotation due to rebar slip.

The analysis results are given in Fig. 10 for both the DSFM
and MCFT analyses. Given in Fig. 11 are representative ob-
served and computed load-deformation plots (for each wall
type, one pair with no axial load, SW11 and SW21, and one
pair with the highest level of axial load, SW16 and SW23).
The strengths of the walls were computed accurately and with
a low degree of scatter; the ratio of the calculated to observed
strength for the 13 walls had a mean of 1.01 and a COV of
5.3%. The computed failure modes involved crushing of con-
crete in the compression toe region coupled with a sliding
shear failure along the base in some cases; this corresponded
well with the observed failures reported by Lefas et al. The
computed deflections and ultimate ductility showed some var-
iance relative to the observed responses but generally were
accurately represented as well. Also notable is that there was
virtually no difference between the results obtained from the
DSFM and those obtained from the MCFT. In most situations
involving orthogonally reinforced structures containing above-
minimum levels of reinforcement, such is likely to be the case.
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FIG. 11. Comparison of Load-Deformation Responses for
Typical Lefas et al. Shear Walls

DISCUSSION AND FUTURE WORK

The DSFM appears to provide reasonably accurate simula-
tions of response over a wide range of conditions and repre-
sents an improvement on the MCFT in terms of both accuracy
and theoretical rigor. However, there are aspects of the for-
mulation in need of further study.

First, the crack shear slip modeling warrants further atten-
tion. In the stress-based approach, an improved formulation
may better account for the influence of initial slip and for
possibly increased degrees of slip in high strength concrete.
In the rotation-lag approach, a more rigorous relationship
quantifying the lag-angle would be desirable, particularly if
the analysis approach is to be extended to situations involving
reversed cyclic loading.

The accuracy of the DSFM appears to deteriorate in beams
containing heavy amounts of longitudinal reinforcement, no
transverse reinforcement and subjected to a high shear-span-
ratio loading conditions (e.g., Bresler-Scordelis Beams OA2
and OA3). It is not known whether this is due to a deficiency
in the constitutive model, due to a deficiency in the finite-
element modeling, or a consequence of the estimated cracking
strengths of the concrete being so much lower than the moduli
of rupture reported for this particular series of beams. Further
study is required. With such beams, it was shown by Vecchio
(1999) that using a concrete postcracking residual tensile stress
of 0.10f, leads to significantly improved results. However, re-
lying on such an empirical “concrete contribution” factor de-
tracts from the transparency and rigor of the theory. Again,
further study is required before the use of a residual tension
term can be advocated.

CONCLUSIONS

The DSFM is shown to be a viable alternative model for
the analysis of reinforced concrete elements. It is an extension
of the MCFT, with the principal difference being that the
DSFM explicitly includes rigid slip along crack surfaces into
the compatibility relations for the element. This allows for a
divergence of the angles of inclination of average principal
stress and apparent average principal strain in the concrete. It
also removes the need for an awkward crack slip check that
currently complicates the MCFT. The model represents cracks
as gradually rotating, but typically lagging behind the reorien-
tation of the principal strains. As such, the DSFM combines
aspects of both rotating-crack and fixed-crack models but is
distinctly different from both in various key aspects. In com-
paring the predictions of the theory to experimental observa-
tions, the DSFM is seen to be more phenomenologically cor-
rect in its representation of reinforced concrete behavior than
the MCFT, or other rotating-crack or fixed-crack models in
general.

The accuracy of the proposed formulation was tested by
examining correlations with the test results from panels,
beams, and shear walls. It should be noted that most of the
test specimens considered were difficult cases due to the nature
of the reinforcement, cross section, or loading details. The
DSFM was generally found to provide accurate calculations
of strength, load-deformation response, and failure mode.
However, with panels that were uniaxially reinforced, or with
beams containing no shear reinforcement, the scatter of results
was significant. Here, strength and behavior was highly de-
pendent on the concrete cracking strength, which itself is sub-
ject to high variability. Hence, a consistently close correlation
should not be expected with such elements, regardless of the
analytical procedure being used. Nevertheless, the DSFM pro-
vided improved results compared to those obtained from the
MCFT.

The corroboration studies also reaffirmed the strength of the
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MCEFT as a simple model providing good accuracy over a wide
range of conditions. Although the MCFT’s assumption of
coaxiality of stresses and strains i1s shown to have some fault,
as was known from the outset, its influence on predicted be-
havior is minor in most cases.
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