DISTURBED STRESS FIELD MODEL FOR REINFORCED
CONCRETE: IMPLEMENTATION

By F. J. Vecchio'

ABSTRACT: The Disturbed Stress Field Model is a smeared delayed-rotating-crack model, proposed recently
as an alternative to fully fixed or fully rotating crack models, for representing the behavior of cracked reinforced
concrete. It is an extension of the modified compression field theory; advancements relate to the inclusion of
crack shear slip in the element compatibility relations, the decoupling of principal stress and principal strain
directions, and a revised look at compression softening and tension stiffening mechanisms. In this paper, a
procedure is described for implementing the formulations of the Disturbed Stress Field Model into a nonlinear
finite-element algorithm. The procedure is based on a total-load secant-stiffness approach, wherein the crack slip
displacements are treated as offset strains. Computational aspects of the formulation are shown to be simple and
numerically robust. The hybrid crack slip formulation used is found to accurately model the divergence of stress
and strain directions, providing an improved representation of behavior. Predictions of shear strength and failure

mode are significantly influenced in some cases.

INTRODUCTION

The Disturbed Stress Field Model (DSFM) was introduced
in Vecchio (2000) as an alternative formulation for describing
the behavior of cracked reinforced concrete elements. The the-
ory is an extension of the modified compression field theory
(MCFT) (Vecchio and Collins 1986), with advancements made
primarily with respect to modeling of shear slip along cracks.
The impetus was to address the diminished accuracy seen from
existing procedures under certain conditions, particularly for
beams or wall elements containing no shear reinforcement.
The new formulation combines aspects of rotating-crack and
fixed-crack models, giving an improved representation of
crack mechanisms and thereby resulting in increased accuracy.

In the DSFM formulation presented in Vecchio (2000), ma-
terial response is described at a fundamental (element) level
for membranes subjected to general 2D stress conditions. Par-
ticular attention is given to including crack shear slip in the
description of the element’s distortion; new equilibrium, com-
patibility, and constitutive relations are defined accordingly.
Compatibility relations are defined such that, given the ele-
ment’s total (apparent) strain condition [€], the concrete de-
formations are resolved into components representing elastic
strain due to stress [€.], equivalent average strain due to rigid
slip along the crack surfaces [€°], elastic offset strains [€%] due
to mechanisms such as thermal expansion or shrinkage, and
plastic offset strains [€7] due to mechanisms relating to loading
history and material damage. Thus, for the concrete compo-
nent, the compatibility relation is

(el = [e] + [€7] + [ + [€7] ¢))

From the elastic strains due to stress [€.], standard strain trans-
formations are used to determine concrete principal strains,
angle of inclination of the stress field, and crack direction.
Note that the angle of inclination thus determined will differ
from the angle of inclination of the total strains, eliminating
the requirement previously held in the MCFT that the incli-
nations of principal stress and principal strain coincide.

Also described in Vecchio (2000) are constitutive relations
for cracked reinforced concrete. These are largely based on the
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formulations previously presented for the MCFT, which in
themselves were based on the results of extensive experimental
investigations. The MCFT relations were revised somewhat,
however, to reflect the new view of crack slip taken in the
DSFM. Thus, given the net (elastic) principal strains in the
concrete, calculations of the concrete principal stresses can be
made. Material and element stiffness factors can then be de-
fined according to the analysis approach being adopted.

This paper shows how the conceptual model and analytical
relations of the DSFM can be incorporated into a nonlinear
finite-element algorithm. An example analysis is used to dem-
onstrate the formulation of the model and numerical aspects
of the solution algorithm. A general discussion is then given
identifying important behavior models implicit in the theory
and how they differ from alternative formulations. Finally, ex-
ample analyses are presented illustrating application of the
analysis procedure and the significance it has on the computed
response.

FINITE-ELEMENT IMPLEMENTATION

Consider the state of stress and strain at a point in a rein-
forced concrete continuum, as shown in Fig. 1. Given a stress
[o] acting at the point, the resulting total strain [€] will be
such as to satisfy the condition

[o] = [D]le] — [0 @

where [D] = composite material stiffness matrix. The element
pseudo-prestress [0°], due to elastic and plastic strain offsets
in the concrete and reinforcement (including crack shear slip),
is defined as follows:

[0°] = [D{[e'] + [d] + [2)} + 2 [D,]e): 3)

For the implementation procedure described here, the ma-
terial stiffness matrix [D] for a reinforced concrete element
will be constructed in the context of a secant-stiffness for-
mulation. Stiffness matrices for the concrete [D.]’ and each of
the reinforcement components [D;]; are first defined with re-
spect to their principal axes. The total stiffness is then deter-
mined by combining the contributions from each of the com-
ponents, using appropriate transformations to account for
anisotropy.

Cracked concrete is treated as an orthotropic material with
its principal axes (1,2) corresponding to the direction of the
average principal stresses (i.e., crack direction). In defining
secant stiffness values, net strains [€.] are used; that is, total
strains [€] less strains due to crack slip [€°], elastic offsets
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FIG. 1. Reinforced Concrete Element: (a) Element Properties and Applied Stresses; (b) Total Average Strain Conditions in Element;

(c) Average Stresses in Concrete

[€2], and plastic offsets [€”]. Hence, the concrete material stiff-
ness matrix [D.]’, evaluated relative to the principal stress di-
rections (1,2), is

E, 0 0
D) ={0 E, 0 @
0 0 G

where E,,, E.,, and G, = secant moduli. At a particular stress-
strain state, the secant moduli are evaluated as follows:

= Jer = Jo . G, _ _Ecl 'E_cz

- Er:l + Ecz (5)

cl 8(:2
where €., and €., = net principal strains in the concrete; and
Ja and f, = corresponding principal stresses [Fig. 2(a)]. Pois-
son’s effects and lateral expansion, if being considered, are
treated in the manner of elastic offsets [€°].

For each reinforcement component, a corresponding matrix
[D.]; is evaluated

peEsi 0 0 .
D)= 0 0 0 (6)
0O 0O

where p; = reinforcement ratio. The secant modulus E, is de-
fined

=

E, = @

S,

m

where €, and f, = average strain and average stress, respec-
tively, in the reinforcement [Fig. 2(b)].

The component material stiffness matrices are transformed
to the global reference system and then summed. The total
material stiffness matrix [D] is evaluated

[D] = (D] + 2, [D.) ®
where -
[D.] = [T.]'[D.)'[T.] )
[D,]: = [LY[D.J [T.): (10)
The transformation matrix [7] is given by
cos™y sin®s cos s sin s
[T]= sin’Ys cos’ys —cos ¥ sin s an

—2cosysiny 2cosPsiny (cos’y — sinY)
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FIG. 2. Definition of Secant Moduli: (a) Concrete; (b) Rein-
forcement

where ¢ = 6 for the concrete (i.e., inclination of principal stress);
and ¢ = o, for the reinforcement (i.e., orientation of bars).

In this formulation, it is necessary to account for the strain
offsets in determining prestrain nodal forces. For the crack slip
strains [€°], free joint displacements [r!] are determined from the
element geometry; that is

[rel = ] [e'] dA 12)

Given the free displacements, the prestrain joint forces [F?]
can be evaluated

[(F] = [k.][r] (13)

where [k.] = concrete component of the element stiffness ma-
trix. Prestrain forces are similarly calculated for the elastic and
plastic offset strains. The prestrain forces are then added to
the nodal load vector. A full description of the approach is
given in Vecchio (1992).

A total-load, iterative secant-stiffness routine is then used to
perform a nonlinear analysis for a reinforced concrete struc-
ture. Through each iteration, the material stiffness [D] and el-
ement stiffness (k] matrices are progressively refined until sat-
isfactory convergence is achieved. The convergence criteria
can be based on either the secant moduli or the element dis-
placements achieving stable values. A fiow chart and descrip-
tion of the algorithm was given by Vecchio (1990) for ele-
ments with elastic offsets only; the plastic and shear slip
offsets are treated in an analogous manner. A subportion of
the algorithm that will be useful in performing a sample cal-
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culation is shown in Fig. 3. In this regard, it should be noted
that, as the stiffness matrices change through each iteration,
so too will the prestrain force vectors due to crack slip strains,
elastic offsets, and plastic offsets. Hence, the total force vec-
tors must be recalculated through each iteration.
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EXAMPLE SOLUTION

As an illustration of the calculations involved, consider
Panel PV19 (Vecchio and Collins 1982). The material prop-
erties of the panel are as follows: f, = 19.0 MPa; f; = 1.72
MPa, &, = —0.00215, a = 10 mm, p, = 0.01785, p, = 0.00713,
fx = 458 MPa, f,, = 300 MPa, and E, = 200,000 MPa. An
analysis will be performed for the uniform loading condition
of o, =0 MPa, o, = 0 MPa, and T = 3.0 MPa. For the sake
of simplicity, it will be assumed that there are no elastic off-
sets, including no postcracking Poisson effects, and no plastic
offsets. From available crack spacing models (e.g., CEB-FIP
model code), the spacing of cracks in the x- and y-directions
(s, and s,) are estimated to be approximately 50 mm.

In the first cycle of calculations, using the stiffness factors
and shear slip strains carried over from the previous load stage
(r = 2.9 MPa), total strains are determined to be [g] =
{0.607 1.159 2.302} X 1073 After 10 iterations of the solu-
tion algorithm, total apparent strains in the element change to
[€] = {0.597 1.208 2.338} X 107°. Given in Appendix I are
the calculations that result during the 11th iteration. Note, in
particular, the calculation of the crack slip strains; at this stress
level, the stress-based criterion governs. Strains calculated dur-
ing this iteration are found to be [€] = {0.596 1.209 2.339}
X 1072 Although the strains appear to have converged, there
remains some change in the computed inclination of the stress
field; hence, additional iterations are required. After 20 itera-
tions, all values have stabilized and the resulting strains are
[e] = {0.594 1.216 2.342} X 107°. Note that all calculations
involved are simple in nature and convergence is rapid and
stable.

SHEAR SLIP MODEL

In the DSFM formulation, various alternatives were consid-
ered for modeling crack shear slip. One was to employ an
explicit constitutive model to relate the amount of shear slip
along the crack to the magnitude of the shear stress acting on
the crack. A second alternative was to fix the degree of “lag”
between the rotation of the stress field in the concrete and that
of the strain field. For reasons previously discussed, a hybrid
approach was taken combining the two.

For the stress-based approach, the relationship adopted was
that of Walraven (1981), taking the stiffness portion of this
model as follows:

Uei

8 = 18w ¥ (0.234w " — 020) 1.

(14)

where 3, = slip displacement along the crack (mm); v, = shear
stress acting on the crack (MPa); w = average crack width
(mm); and f,. = concrete cube strength (MPa). An alternative
formulation is obtained by drawing on the work of Okamura
and Maekawa (1991). Defining v, .. as the maximum shear
stress that can be resisted on the crack and a as the aggregate
size in millimeters, the following shear slip relation is ob-
tained:

3
A (15)
where
\I’ = vci/vcmax (]6)
Vemax = VI (MPa) a7

0.31 + 24wl(a + 16)
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FIG. 4. Comparison of Concrete Shear-Stress—Shear-Slip
Models: (a) for 25 MPa Concrete; (b) for 60 MPa Concrete

As shown in Fig. 4, the two stress-based formulations provide
essentially similar stiffnesses, although they differ somewhat
in representing the initial slip.

To assess sensitivity to the various slip models and provide
an opportunity for comparison to the MCFT formulation, con-
sider again the response of Panel PV19. Separate analyses
were performed using, alternatively, the rotation lag, crack
shear stress, and hybrid criteria for crack shear slip. Shown in
Fig. 5(a) are the resulting computed shear-stress—shear-strain
responses. There are only minor differences among the three
DSFM simulations, with the rotation lag approach giving very
slightly increased deformations at the early stages and the
stress-based formulation giving a reduced strength and stiff-
ness at the intermediate stages of loading. The hybrid formu-
lation provides a smooth transition between the two, producing
a result that agrees reasonably well with the experimental val-
ues. The MCFT formulation also gives a good representation
of response, although the deformation at the ultimate load
stage is significantly underestimated. More importantly, there
is a subtle but meaningful difference in the predicted failure
mode. The MCFT predicts failure by the concrete stress at-
taining its peak strength, f, > f, (i.e., concrete crushing). The
DSFM, on the other hand, indicates behavior governed by ex-
cessive slip along the crack surface leading to a concrete shear
failure. The latter is more consistent with the observed failure
mode.

For this same set of analyses, the predicted angles of incli-
nation of the stress and strain fields are shown in Figs. 5(b
and c), respectively. Here, the differences between the various
formulations become more apparent. The hybrid formulation
for the crack shear slip provides a reasonably good represen-
tation of the response measured in the test panel, particularly
at load stages near ultimate where the inclination of the ap-

+——e Experimental

—— MCFT

-——— DSFM (Hybrid)

1= Walraven Stress
E PVI9 e 5°Lag

SHEAR STRESS, v (MPa)
N

0 2 4 6 8 10 12
SHEAR STRAIN, ¥ (x10%)

(a)

2z 55

g +——e Experimental i

g —— MCFT {7

A — DSFM (Hybrid) /

& 50— ----— Walraven Stress

g 3 ........... 5° Lag

» B

2

=

m AR

? a5

s

g PV19

(4

& 4 | L l L L L L .
0 05 10 15 20 25 3.0 35 4.0 45

SHEAR STRESS, v (MPa)
(b)

2 65

=] +——e Experimental

E ol —— MCFT

z2 [ e DSFM (Hybrid)

g | e Walraven Stress

g & 55— e 5°Lag

A s

E 5ol /

< 50 /

g /

e . 4

QO 19

2

= PV19

o 40 | ] ! 1 1 | I 1
0 0.5 1.0 1.5 20 25 3.0 3.5 40 45

SHEAR STRESS, v (MPa)
(c)

FIG. 5. Comparison of Experimental and Theoretical Re-
sponses for Panel PV19: (a) Shear Stress-Strain Response; (b)
Inclination of Principal Stress Direction; (c) Inclination of Appar-
ent Principal Strain Direction

parent strain field begins to increase rapidly. The other two
slip formulations also provide good agreement. The MCFT
formulation, on the other hand, assumes that the two angles
of inclination are equal; the values computed lie approximately
midway between the inclination of the principal strains and
that of the principal stresses, significantly misrepresenting
both.

SHEAR STRENGTH

Analyses were performed for a hypothetical panel in which
the longitudinal reinforcement was fixed at p, = 2.5% and the
transverse reinforcement ratio was increased from p, = 0% to
@, = 3%. The remaining material properties were held constant:
fi =25 MPa, f; = 2.0 MPa, &, = —0.002, a = 15 mm, s, = s,
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= 50 mm, f,, = f,, = 450 MPa, and E, = 200,000 MPa. Shown
in Fig. 6(a) are the ultimate shear strengths of the panel as
predicted by the DSFM (hybrid model) and MCFT. At low
values of transverse reinforcement ratio, the DSFM predicts
shear capacities approximately 10% lower than those obtained
using the MCFT. Note in particular that, for transverse rein-
forcement levels of 0.05% or less, capacity is dictated by the
stress at first cracking (i.e., shear strength is constant). At high
reinforcement ratios and in situations where there is little slip
induced on the crack (e.g., p. = p,), shear strengths predicted
by the DSFM are significantly higher. This is more consistent
with observed test results; for example, with panels PV23 and
PV25 (Vecchio and Collins 1982) and panels tested by Kol-
legger and Mehlhorn (1990).
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Shown in Figs. 6(b and c) are the corresponding orientation
of the stress and strain fields. At low transverse reinforcement
levels, the DSFM predicts angles of inclination for the prin-
cipal tensile strain approximately 8° higher than those pre-
dicted by the MCFT. For the inclination of the principal tensile
stress, normal to the crack direction, the DSFM angle of ori-
entation is about 4° lower. These differentials can be signifi-
cant in situations where the flow of force from the load ap-
plication point to the supports may or may not form a direct
strut (i.e., in beams with short shear spans). As the transverse
reinforcement level increases, differences diminish to zero.

A comment is also in order regarding the substantially re-
duced degree of compression softening included in the new
formulation. Inclusion of crack shear slip in the compatibility
relations of the DSFM results in reduced element stiffness.
Hence, less stiffness degradation need be ascribed to the soft-
ening of the concrete in compression due to the influence of
transverse cracks. In the MCFT, where deformations due to
crack slip are not explicitly considered, the necessary degra-
dation in element stiffness is represented entirely by an in-
creased compression softening factor. In this regard, the
DSFM approach is more rational and more consistent with the
degree of compression softening reported by other researchers
(Fig. 7). However, the two approaches yield substantially sim-
ilar results over a wide range of problems, as demonstrated in
Fig. 6(a) discussed above. Difficulties will arise only if the
two formulations are incorrectly combined [for example, using
the softening equations of the MCFT with the compatibility
relations of the DSFM (or other crack slip models or fixed-
crack models) or using reduced softening formulations in fully
rotating crack (i.e., MCFT-like) models].

SAMPLE APPLICATION

To illustrate the theoretical model’s application to the anal-
ysis of reinforced concrete structures through nonlinear finite-
element procedures, an analysis was made of a concrete box
structure recently tested at the University of Toronto by Kuz-
manovic (1998). The structural details of the test specimen are
given in Fig. 8; note that the walls of the structure contain no
shear reinforcement. The model was loaded at several points
by actuators acting on the top and bottom walls, simulating
soil pressures acting on the external surfaces. The load was
monotonically increased until a brittle shear failure occurred
in the top slab, near the slab-wall joint, at a load equivalent
to a uniformly distributed load of 350 kN/m®.

The finite-element model constructed to represent the test
specimen is shown in Fig. 9(a). A total of 788 8-degrees-of-



freedom (DOF) rectangular elements and 4 6-DOF triangular
elements were used to present the concrete sections. Longi-
tudinal reinforcement was mostly modeled as smeared within
appropriate narrow bands of elements, although 44 truss bar
elements were used to augment the modeling to properly rep-
resent the reinforcement details. Analyses were conducted us-
ing a load increment of 10 kN/m>. The nonlinear finite-element
analysis (NLFEA), utilizing the formulations of the DSFM,
found the structure to withstand an ultimate load of 370 kN/
m’. Failure occurred by shear failure of the top slab, near the
comner, as in the test specimen. The observed and calculated
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load-deflection responses of the specimen are compared in Fig.
9(b). It is seen that the predicted response is somewhat
stronger, more flexible, and more ductile than that observed.
However, given that this is a large-scale shear-critical structure
containing no shear reinforcement, the correlation is of ac-
ceptable accuracy; such structural elements are prone to wide
scatter in their responses (Vecchio 1999). It should be noted
that the calculated flexural capacity of the structure is 635 kN/
m*® and the American Concrete Institute code calculated shear
capacity is 455 kN/m’.

A more typical application of the analysis procedure would
be one where the structure contains at least minimum rein-
forcement (for example, a shear wall structure). Considered
here is Wall SW16, tested by Lefas et al. (1990), shown in
Fig. 10. The wall web region contained 1.1% horizontal and
2.1% vertical reinforcements. The concealed column elements
at the edges of the wall contained 3.1% vertical reinforcement
and also hoop ties representing an out-of-plane reinforcement
level of 1.2%. The test specimen was subjected to a monoton-
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ically increasing lateral load in combination with a constant
axial load. Wall SW16 was a well-reinforced and confined
squat wall; its ultimate capacity and deflection response were
shear critical and influenced by confinement effects.

The wall specimen was represented by the finite-element
model shown in Fig. 11(a) comprising 340 8-DOF rectangular
elements. Lateral load was applied as 2 monotonically increas-
ing imposed displacement in 0.2-mm increments. The resulting
load-deflection response at the top beam level is shown in Fig.
11(b). The computed lateral load capacity of 365 kN compares
well with the experimentally determined value of 350 kN. As
well, the stiffness and ductility of the wall are accurately rep-
resented. The predicted failure mode, involving a shear-crush-
ing failure in the compression-toe region of the wall, is also
consistent with the observed behavior.

CONCLUSIONS

The DSFM, for analysis of reinforced concrete elements, is
presented in a form adaptable to nonlinear finite-element al-
gorithms. Procedures are described for implementation into a
total-load, secant-stiffness based formulation. Crack shear slip
as well as other elastic and plastic offset strains in the concrete
and reinforcement are handled through use of prestrain nodal
forces. The resulting algorithm is stable and robust, allowing
calculation of an element’s load-deformation response up to
and beyond ultimate capacity. The conceptual model is simple
and transparent, and the calculations involved are basic.

The sample problem and investigative studies undertaken
yielded the following observations:

» The presented crack slip formulations allow for the di-
vergence of principal stress and principal strain directions
in the concrete, providing a better representation of typical
behavior observed in test specimens.

* The described hybrid crack slip model is a successful
amalgamation of stress-based and lag-based approaches;
however, the stress-based slip model taken alone is suf-
ficient in most applications.

* In elements containing little or no transverse reinforce-
ment, the rotation of the concrete stress field is retarded
by up to 10° relative to that of the strain field, resulting
in reduced computed shear capacities compared to those
obtained from a fully rotating crack model where the in-
clination of the stress and strain fields are assumed to
coincide.

* In elements containing high amounts of shear reinforce-
ment, the lower degree of compression softening ascrib-
able to transverse cracking results in considerably in-
creased shear capacities relative to those obtained
according to the fully rotating crack model.

» The degree of compression softening required in the de-
layed-rotating-crack model (DSFM) is consistent with that
reported by other researchers.

A thorough corroboration of the accuracy of the proposed for-
mulation is possible (Vecchio, unpublished manuscript, 2000).

APPENDIX 1. SAMPLE CALCULATIONS

Consider Panel PV19, with properties as previously de-
scribed, subjected to a pure shear load of 7,, = 3.0 MPa. Re-
sponse 1s calculated according to the formations presented, us-
ing the secant-stiffness algorithm summarized in Fig. 3 (at the
element level). For simplicity, it will be assumed that elastic
expansion offsets [€7] and plastic offsets due to loading history
and material flow [€7] are zero. Elastic offsets in the reinforce-
ment [€°], are also zero.

At the current load stage, after 10 iterations of the iterative
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procedure, the total apparent strains [€] and concrete net strains
[e.] are found to be

[e] = {0.597 1.208 2.338} x 1073
[e.] = {0.823 0.982 2377} X 107°

Calculations will now be performed for the 11th iteration.
Note that equation numbers prefixed with I [e.g., Eq. (I-33)]
refer to equations given in Vecchio (2000).

Step 1: Strain Components

1. Using Egs. (I-10) and (I-11), determine the average prin-
cipal strains and their inclination

€1 =2.094 X 107%, g,=—0.288 X 107% 6, = 46.92°
2. For inclination of apparent strains, use Eq. (I-9)
6, = 52.34°
3. For average strains in reinforcement, use Eq. (I-19)
£, =0.597 X 107% ¢, =1.208 X 1073
Step 2: Average Stresses in Concrete
and Reinforcement

1. From Eq. (I-24), find C, = 1.658. Given that C, = 0.55,
use Eq. (I-23) to calculate B, = 0.523. Hence, using Egs.
(I-26) and (1-27), find f, = —9.94 MPa and €, = —1.124
X 107°. Using the Popovic’s formulation [Egs. (I-28)—
(I-30)] find

f2 = —4.93 MPa

2. Average principal tensile stress in concrete—from the
tension softening mechanisms, using Egs. (I-33) and
(I-34) and assuming G;= 7.5 N/m, L., = 750 mm, and
fi = 1.72 MPa, find

@ = 0.00 MPa

From the tension stiffening mechanisms, using Egs.
(I-35)-(1-37), find

fei=1.08 MPa
Hence, using Eq. (I-38), find
for = max(f2,, fo1) = 1.08 MPa

3. Average stresses in reinforcement—from the average
strains €, and &,,, using Eq. (I-39), find

fu=119 MPa; f, =242 MPa

Step 3: Local Stresses at Cracks

1. To satisfy equilibrium Eq. (I-7), using an iterative pro-
cedure, find the incremental strain at the crack to be Ag,,,
= 1.111 X 107* Hence, using Eq. (I-20), calculate local
rebar strains

g, = 1.115 X 107% €., = 1.802 X 10°°
Using Eq. (I-39), find local rebar stresses
Jer, =223 MPa;  f,, =300 MPa
Check the equilibrium
Z pil frer, — £,)c05%0, = (0.01785)(223 — 119)c0s*(46.92°)
+ (0.00713)(300 — 242)cos*(—43.08°) = 1.08 MPa =f,
2. Find the shear stress on the crack using Eq. (I-8)



y,; = 0.716 MPa

Step 4: Crack Slip

1. Calculate the crack spacing, from Eq. (I-21), to be s =
35.4 mm. Calculate the crack width, using Eq. (I-22), to
be w = 0.073 mm

2. From the stress-based approach, using Egs. (I-40) and
(1-12), calculate the shear slip strain

v =0.460 X 107°

3. From the rotation lag approach, using an initial crack
direction of 8,. = 45° and the lag limit 8° = 5°, find from
Egs. (I-41)-(1-43) that

A, =7.34° A6, = 2.34°
And hence, 6, = 47.34°. Now, using Eq. (I-18), find
v2 = 0.418 X 107°

4. At this stage of loading, the stress-based criterion gov-
erns

v, = max(y?, v2) = 0.460 X 107*

5. Resolve the slip strain into orthogonal components using

Egs. (I-13)-(I-15)
g:=—0227 X 107% ¢5,=0227 X 107
v, =—0.038 X 107*

Step 5: Secant Moduli
1. Concrete—given
€, =2.094 X 107 ¢,=—0.288 X 107*
f.=1.08MPa; f,=—4.93MPa
Find, using (5)
E., =516 MPa; E.,=17,096 MPa; G,=501MPa
2. Reinforcement— given
£,=0.597 X 107% ¢&,=1.208 X 1073

fa=119MPa; f,=242MPa

Using (7), find

E,,=200,000 MPa; E,, = 200,000 MPa

Step 6: Material Stiffness Matrices
1. Concrete—from (9) and (11), and with 6 = 46.92°

5476 3885 —4397
[D]= 4366 —3875 | (MPa)
4385

2. Reinforcement—from (10) and (11), given that p; =
0.01785, p, = 0.00713, a, = 0°, and a, = 90°, find

3570 0 O
[D,=| 0 0 0| (MPa)
0 0 0]
0O 0 O
[D,).=]0 1426 0| (MPa)
0 O 0

3. Composite

9046 3885 —4397
[Dl= 5792 —3875§ (MPa)
4385

Step 7: Offset Strains
(€] = (2] = (e, =) ={0 O O}
[e°]={—-0227 0227 -0.038} %107

In the NLFEA procedure, use [€°] to determine the prestrain
joint forces. Alternatively, at the element level, use (3) to de-
termine the element prestress vector

(c®) =[D.Jie’] = {—0.194 0.256 —0.048} (MPa)

Step 8: New Estimate of Strains

From the NLFEA algorithm, determine the resulting strains
at the conclusion of the 11th iteration

[€) ={0.596 1.209 2.339} X 107*
[e.] ={0.823 0.982 2.377} X 107*

Alternatively, at the element level, use (2) to determine the
new estimate of total strains

(€]’ = [D] {[o] + [6°]} = {0.596 1209 2.339} X 107°
[e.]=[e] — [¢]1={0.823 0982 2377} X107
where

0215 0.000 0216
[D]"'=]0000 0422 0373|x10 (MPa™)
0216 0373 0.775

[c]={00 0.0 3.0} (MPa)
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APPENDIX ill. NOTATION

The following symbols are used in this paper:

a
[D]

aggregate size (mm);
total material stiffness matrix;

(L]
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Uei

Ve max

material stiffness matrix for concrete component;
material stiffness matrix for reinforcement component;
initial modulus of elasticity of concrete;

secant modulus of concrete in principal 1-direction;
secant modulus of concrete in principal 2-direction;
elastic modulus of reinforcing steel;

strain hardening modulus of reinforcing steel;
equivalent nodal forces representing offsets due to crack
slip;

compressive strength of concrete cylinder (28 days);
tensile strength of concrete;

compressive strength of concrete cube;

principal tensile stress in concrete (in 1-direction);
principal compressive stress in concrete (in 2-direction);
peak compressive stress in cracked concrete (negative
value);

average stress in reinforcement;

local stress (at crack) in reinforcement;

yield stress of reinforcement;

secant shear modulus of cracked concrete;

fracture energy of concrete;

element stiffness matrix;

equivalent free nodal displacements due to crack slip off-
sets;

average crack spacing in 1-direction;

average crack spacing in reference x-direction;

average crack spacing in reference y-direction;

rotation transformation matrix;

shear stress on concrete relative to reference x,y-direc-
tions;

= shear stress on crack surface;

maximum shear stress that can be resisted on crack sur-
face;

average crack width;

inclination of reinforcement component relative to ref-
erence x-direction;

Ba

AeI¢:r
A®

le]

[€7]
(€°]

(€]
o

s
{85]
€.,
ecl
£4:'2

strength reduction factor due to transverse cracking;
shear strain due to slip along crack surface;

local incremental strain in 1-direction at crack location;
angle difference between inclinations of principal
stresses and apparent principal strains;

slip displacement along crack surface;

apparent (total) average strains in element, including
crack slip strains;

plastic offset strains in concrete due to loading history;
equivalent average strains due to discontinuous slip along
crack;

elastic offset strains in concrete due to expansion, ther-
mal, or prestressing effects;

initial elastic prestraining reinforcement;

average strains in concrete, net of crack slip strains;
cracking strain of concrete;

strain in concrete in principal tensile stress direction;
strain in concrete in principal compressive stress direc-
tion;

compressive strain at peak stress f, in transversely
cracked concrete (negative value);

average strain in reinforcement;

local strain in reinforcement at crack location;

strain in reinforcement at start of strain hardening;
ultimate strain for reinforcement;

compressive strain at peak stress f in concrete cylinder
(negative value);

inclination of normal to crack direction in concrete;
inclination of principal stresses in concrete at first crack-
ing;

angle between reinforcement component and normal to
crack;

inclination of apparent (total) principal strains in con-
crete;

inclination of principal stresses in concrete;
reinforcement ratio; and

average stresses acting on element.



