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Analysis of Shear-Critical Reinforced Concrete Beams

by Frank J. Vecchio

Recent experience among some researchers suggests that analysis
methods based on the smeared rotating crack concept do not ade-
quately model the response of shear-critical concrete beams containing
little or no shear reinforcement. Application of the modified compres-
sion field theory (MCF'T), one of the first such rotating crack models,
to the analysis of shear beams is addressed herein. The original con-
stituttve relations are re-examined, and a crack width limit and
residual tension term are tntroduced. When incorporated into a non-
linear finite element procedure, the model ts shown to adequately sim-
ulate the strength, stiffness, ductility, and failure mode of lightly
reinforced shear-critical test beams. Sectional analysis procedures
based on the same model are also shown to provide accurate predic-
tions of response. Prevailing mechanisms are discussed, and aspects of
the model in need of further refinement are also identified.

Keywords: beams (supports); concretes; cracking (fracturing); shear prop-
erties; tension; tests.

INTRODUCTION

The behavior and design of reinforced concrete beams in
shear remains an area of much concern. Approximately 40
years after the collapse of the U.S. Air Force hangars, attrib-
uted to inadequate shear design practice, research activity in
this area continues. Design code procedures are continually
changing and generally becoming more stringent. Structures
that were designed several decades ago typically do not com-
ply with the requirements of current codes, with the implica-
tion that massive amounts of funds must be spent on
rehabilitating or upgrading the infrastructure. [t remains a
pressing need to establish design and analysis methods that
provide realistic assessments of the strength, stiffness, and
ductility of shear-critical elements.

Among the theoretical formulations developed in recent years
for this purpose was the modified compression field theory
(MCFT)," essentially a smeared, rotating crack model for
cracked reinforced concrete elements. On the basis of a number
of panel tests, constitutive relations were developed describing
the behavior of cracked reinforced concrete in compression and
in tension. This behavior, influenced by such mechanisms as
compression softening and tension stiffening, is fundamentally
different from that of plain concrete. The constitutive models
developed were incorporated into new design procedures? that
form the basis for the general method for shear design in the
Canadian Code, CSA A23.3 M94. They were incorporated into
the formulation of various nonlinear finite element algorithms
as well.>® The resulting analysis procedures have been shown
to provide accurate simulations of response for a wide range of
structures including beams in flexure, shear and torsion, deep
beams, shear walls, columns, and plates and shells.®

The use of smeared rotating crack models has gained some de-
gree of acceptance among analysts; thus, several alternative, but
essentially similar, formulations were developed by a number of
researchers.” In addition, other researchers opted for smeared,
fixed crack models."™'! In general, formulations of both types
can be shown to provide good correlations with test data for
structures that are orthogonally reinforced with the reinforce-
ment ratio in the weaker direction being 0.1% or greater.

According to researchers, however, in the application to
beams with little or no shear reinforcement, and loaded so as
to be critical in shear, the accuracy of the various analysis
procedures has shown some deficiencies. Chung and Ahmad'?
concluded that “results indicate that the MCFT is not appli-
cable to lightly reinforced or unreinforced concrete member.”
These conclusions, however, were based on analyses that
were an incomplete adaptation of the theory (refer to discus-
sions in Reference 13).

Youb and Filippou,® using a model that is an extension of
both the MCFT and work by Balakrishnan and Murray, were
able to get good results for many structure types except lightly
reinforced shear beams. Here, “numerical difficulties were,
however, encountered when the crack distribution in the struc-
tural element does not satisfy the assumptions of the smeared
crack model, as in the case of beams without shear reinforce-
ment.” Hsu and Zhang'* also encountered problems in apply-
ing their rotating crack model to elements lightly reinforced in
one direction. This prompted them to propose a fixed-crack
model for use in such situations. On the other hand, Foster,®
among others, reported good success in using rotating crack
models in the analysis of shear critical beams.

Most smeared, rotating crack models are based on formula-
tions involving average strains and average stresses. Few give
consideration to local stress conditions at crack locations, al-
though some (for example, Maekawa'®) incorporate a crack
slip check. In the analysis of adequately reinforced structures,
the resulting cracks are well distributed and the analyses typi-
cally provide accurate simulations. In lightly reinforced shear
beams, however, behavior is often governed by the formation
of a dominant shear crack. Here, a consideration of the local
stress conditions adjacent to the crack is critical to a proper
analysis, hence the difficulty encountered by some of the previ-
ously cited researchers and others.

RESEARCH CONTRIBUTION

This paper will address the applicability and accuracy of
smeared, rotating crack models to the analysis of shear-critical
beams. In particular, it will focus on the aspects of the formu-
lations that can potentially corrupt accuracy and identify some
minor additions to the formulation that improve results. It will
show, contrary to the conclusions of some other researchers,
that rotating crack analyses can provide an accurate represen-
tation of the strength, stiffness, and ductility of lightly rein-
forced shear-critical beams.

CONSTITUTIVE MODELING
"The modified compression field theory is a smeared, rotating
crack model for simulating reinforced concrete behavior.
Cracked concrete is treated as an orthotropic material with
unique stress-strain characteristics that are, to some extent,
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dependent on the amounts of reinforcement present. For the
composite element, composed of concrete and any number of
reinforcement components of arbitrary direction, equations of
equilibrium, compatibility, and constitutive response are devel-
oped. These equations are formulated in terms of average
stresses and average strains in the materials. A key aspect of
the model, however, is to also examine and satisfy local stress
conditions at crack locations. Another key assumption of the
theory is that the directions of principal strain in the concrete
coincide with the directions of principal stress under monoton-
ic loading conditions. The formulations of the MCFT are doc-
umented elsewhere;"'% herein, it will be useful to review the
constitutive modeling of the concrete.

The strength and stiffhess of concrete in compression is re-
duced by the presence of transverse cracking. In a principal
compression strain direction, the principal compressive stress
Jea s calculated from the corresponding strain €, by the follow-

ing relationship
=4 [2{Z)- ()] (1
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Note that the damage factor B, is a function of the principal
tensile strain €, in the direction normal to the compression di-
rection. A more complete discussion of this so-called compres-
sion softening effect is given in Reference 16.

For concrete in a principal tensile strain direction, prior to
cracking, a linear relation is used. Thus, the principal tensile
stress f, is

f;l = Ec'sl (5)

where E_is the initial tangent modulus of the concrete. After
cracking, the following relation is employed to reflect tension
stiffening effects

S /A
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where f7is the tensile cracking strength.

It is important, particularly in concrete beam elements con-
taining little or no shear reinforcement, to check that the con-
crete tensile stresses can be transmitted across cracks. For an
element containing 7 number of reinforcement components,
the local crack check is

Ja
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where p; is the reinforcement ratio, f; is the yield stress, f;; is
the average stress, and 0, is the angle between the reinforce-
ment and the normal to the crack. Note that for areas of con-
crete containing no reinforcement, the implication of Eq. (7) is
that no postcracking tensile stress can exist.

To transit the average concrete stresses across the cracks, the
local stresses in the reinforcement must be increased at the
crack locations. This gives rise to shear stresses on the crack
surfaces because the local stress directions no longer coincide
with the average principal strain directions. The calculated
shear stress on the crack surface v,; is checked against a limiting
Stress vg,,,,, which is based on the work of Walraven.!” Thus
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where wis the crack width and a is the aggregate size. If v, ex-
ceeds v,,,, then it is assumed that slip is occurring on the
crack surface and the concrete tensile stress must be reduced.
The stress f,is reduced until v, < v,,,,,..

The MCFT and the constitutive relationships described pre-
viously were incorporated into a number of analysis procedures
including various nonlinear finite element routines.* In appli-
cations to a diverse range of concrete structures, the procedure
has been shown to provide accurate simulations of behavior.
Other researchers, using similar procedures, have also reported
good success.

APPLICATION TO SHEAR-CRITICAL BEAMS

The MCFT was based on certain assumptions that bear re-
examination in the context of beams containing little or no
shear reinforcement. Relevant to this discussion are three basic
suppositions:

1. Stresses and strains are treated in terms of average values.
This implies formation of a fairly well distributed pattern of
cracks, as opposed to a situation where behavior is governed by
one or two dominant cracks;

2. Postcracking tensile stresses exist in the concrete as a con-
sequence of tension stiffening mechanisms between the rein-
forcement and the concrete; and

8. Principal strain directions are coincident with principal
stress directions.

Consider a concrete beam containing a low amount of trans-
verse reinforcement, and loaded in a manner to be shear critical
(Fig. 1). In such an element, it is typical to see a crack pattern
dominated by a few large cracks running from the load appli-
cation point to the supports. Such cracks can exceed several
millimeters in width, while the cracks elsewhere remain of neg-
ligible width. A case in point would be Beam WM 100D, tested
by Collins and Stanik,'® shown in Fig. 2. At maximum load, the
principal shear crack has a width of 6.0 to 7.0 mm; elsewhere,
the cracking is minor and limited to widths of 0.1 to 0.2 mm. In
such cases, consideration of local stress conditions and the flow
of forces across cracks takes on heightened importance. Fur-
ther, it has been observed in tests of such beams that a measur-
able amount of slip occurs along the crack. This slip distortion,
if not taken into account in the element compatibility relations
(MCFT currently does not), results in an apparent violation of
the assumption that principal stresses remain aligned with prin-
cipal strains. Finally, if a finite element (FE) analysis is undertaken
for the beam, the elements used to model the web portion of the
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Fug. 1—Typical shear beam; (a) formation of dominant shear crack;
and (b) FE representation of beam.

beam will contain no reinforcement. Hence, no postcracking
tensile stresses can be sustained in the web owing to Eq. (7).
These postcracking tensile stresses, essentially equivalent to
the concrete contribution ¥, prescribed in the ACI Code and
other standards, are necessary to complete the internal truss-
like load resisting mechanism. Without them, the beam fails
shortly after cracking.

Thus, in applying smeared rotating crack models to the
analysis of shear beams, the range of applicability of the formu-
lations is tested. While some researchers have reported good
success in modeling shear-critical beams using such models,
others have not. Shown in Fig. 3, for example, are analyses for
Bresler and Scordelis'® Beams A-1 and OA-1, determined us-
ing the MCFT relationships as originally constituted and pre-
viously presented. Beam A-1 contained a relatively low amount
of shear reinforcement at 0.10% and sustained a shear failure.
The computed strength and load-deformation response are a
reasonably accurate approximation to the measured response.
Beam OA-1 was similar to Beam A-1 but contained no shear re-
inforcement. The computed response for Beam OA-1 now
shows considerable deviation from the test results. In general,
it is found that for shear-critical beams containing light
amounts of shear reinforcement, from approximately 0.05 to
0.10%, the strength is underestimated and the ductility overes-
timated. For shear-critical beams containing no shear reinforce-
ment, strength is typically underestimated by a significant
amount.

In shear beams having low shear span-to-depth ratios from
approximately 2.0 to 8.0, a counteracting trend can prevail. In
the analyses of such beams, the computed rotation of the cracks
may proceed to the extent where a large portion of the load is
taken to the support by direct strut action. In reality, slip along
the cracks can delay or prevent such a reorientation of the
stress trajectories. Herein, it is common to see the computed
strength and stiffness exceed the measured values by a signifi-
cant amount.

While a relatively high degree of scatter should be expected
for concrete elements strongly influenced by the concrete tensile
strength and aggregate interlock, there are other under]ying
factors for this systematic deterioration in accuracy. These relate

(b)

Fig. 2—Beam WM100D tested by Collins and Stanik: (a) at ulti-
mate load; and (b) at failure. (Crack widths shown in mm.)

back to the three assumptions previously cited, and the formula-
tions that are derived from them. A closer examination follows.

CRACK WIDTH LIMIT

Perhaps the single most important aspect of the analysis
theory, embodied in Eq. (1) through (4), is the premise that the
compression strength of concrete is adversely affected by
transverse cracking. A re-examination of this compression-
softening behavior, conducted more recently16 using a much
larger database, essentially reaffirmed the original findings and
produced a slightly modified formulation. It is useful to exam-
ine the nature of the data used to formulate the original and up-
dated versions of the compression-softening damage factor B,
Shown in Fig. 4 are the principal compression stress-strain
data obtained from over 200 panel tests conducted over the
past 20 years, including several panels that were uniaxially re-
inforced or contained very light amounts of reinforcement in
one direction. The plots indicate that relatively few data were
collected for strain conditions where the principal tensile strain
exceeded 12 X 107 (assume €, = 2.0 X 10%), or where the ratio
of principal strains (€,/¢,) exceeded 186.

In this context, it is useful to examine more closely the com-
puted response of Beam A-1. At an imposed midspan deflection
of 18 mm, near the ultimate load condition, the FE analysis in-
dicates that a large inclined crack had formed in the web region
of the beam. The most critically stressed element in the FE
analysis, located on this crack plane, is situated at middepth ap-
proximately 1000 mm from the support. In this element, the
calculated principal tensile strain is 45.0 X 10”% and the princi-
pal compressive strain is —1.48 X 10”7, giving a €,/¢, ratio of
30. Further, the strain conditions result in a computed crack
width of 7.2 mm (determined as w = s- €, where sis the average
crack spacing). The coexisting principal compressive stress is
found to be —8.02 MPa. (Other elements straddling the domi-
nant shear crack exhibit similar states.) Clearly, the strain
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Fig. 3—Bresler-Scordelis Beams A-1 and OA-1: (a} beam details;

and; (b) correlation of analysis to measured load-deflection response,
assuming original MCFT formulation.

conditions are well beyond the range for which the compression
softening relationships were calibrated.

While the compressive stresses in lightly reinforced shear
beams are relatively small (in this case about 0.15 f/and equal to
the calculated f}), small levels of compression are all that is re-
quired to transfer the loads via strut action to the supports. As a
consequence of slip along the crack surface, however, the orienta-
tion of the local stress field may not be coincident with the com-
puted inclination of the average principal strains and average
principal stresses. Thus, the compression stresses, albeit small,
may be crossing the crack plane. In this case, where the crack is
in excess of 7.0 mm wide, such an occurrence is highly unlikely
by any means. Thus, an additional condition must be imposed in
such anomalous situations to guard against this possibility.

In shear critical beams, it is typically found that the formation
of a dominant shear crack is localized in a narrow band of ele-
ments. In these elements, it is reasonable to discount completely
their ability to sustain compressive stresses. For the analyses
reported herein, it was found that imposing a 2 mm crack width
limit yields, in most cases, significantly improved results. Thus,
in conjunction with the compression softening formulation, it is
proposed that when the computed crack width in an element ex-
ceeds 2.0 mm, the computed principal compression stress be re-
duced according to the following relationship
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Fig. 4—Compression softening data obtained from panel tests: (a) range
of principal tensile strain, €,; and (b) range of strain ratio —€,/€,,.

where f'7, is the stress computed using Eq. (1) through (4), and
wis the crack width.

The principal effect of imposing the crack width limit on the
compression softening formulation is to restrict the computed
ductility in lightly reinforced shear-critical elements. In most
other situations, the crack width limit has little or no influence.
As will be shown, the overly ductile computed response for
Beam A-1, and similar beams, is largely corrected as a result of
this check.

RESIDUAL TENSION

As discussed, in beams containing low amounts of shear rein-
forcement, the concrete contribution plays a major role in form-
ing a viable internal load resisting mechanism for shear forces.
This concrete contribution is derived from mechanisms such as
aggregate interlock, dowel action, and the interaction between
the concrete and the reinforcement commonly known as tension
stiffening. With respect to the latter, it is commonly accepted
that the interaction effects are transmitted to a zone of concrete
within approximately 7-1/2 bar diameters from the reinforce-
ment or less, as suggested by the CEB-FIP model code.

In the FE modeling of reinforced concrete elements, aggre-
gate interlock and tension stiffening effects can be represented
by a formulation allowing for postcracking tensile stresses in
the concrete (for example, Eq. (6)). As previously discussed,
however, it is necessary to check that these stresses can be trans-
mitted across the crack; hence, the need for Eq. (7). The check is
made for each element, according to the stresses and reinforce-
ment conditions in that particular element. The difficulty that
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Mesh shown for A-1.

arises is that the tension stiffening action in the actual beam
may be induced by reinforcement that is located some distance
away. In relation to shear beams, and in Beam OA-1, for exam-
ple, the bottom reinforcement will give rise to tension stiffen-
ing effects throughout much of the tension zone, if one accepts
the 7-1/2 bar diameter guideline. Yet it is common to model the
reinforcement as discrete bars or as smeared within a narrow
band of elements coincident with the centerline of the rein-
forcement. The elements in the middepth regions of the beam
are represented as unreinforced, and hence unable to develop
any postcracking tensile stresses owing to the restrictions of
Eq. (7). This results in typically underestimated shear capaci-
ties for beams containing no shear reinforcement and is largely
the result of modeling strategy rather than deficiencies in the
constitutive models.

In shear-critical unreinforced elements, it has been found
that using a residual concrete tensile stress of 0.10 to 0.15 f;
for concrete in tension leads to much improved analytical re-
sults. (The concrete cracking stress f/is taken as 033\/fc')
Foster” has done essentially the same, using a lower limit of
0.30 to 0.40 f'{on the postcracking tension curve. He also re-
ported good correlation with test data. Thus, for unreinforced
elements exposed to high transverse shear conditions, it is pro-
posed that

f120.10£7 (10)

The effect of including this lower limit on the tension stiffening
stresses is to improve strength predictions in beams having
low shear reinforcement ratios p,, of less than approximately
0.05%. As p, values increase beyond that level, the influence
quickly diminishes (a residual tension should not be used in el-
ements primarily experiencing membrane tension stresses, as
in the flanges of beams or shear walls; it can lead to overesti-
mated tension forces capacities).

It is interesting to note that in fixed crack models, a shear re-
tention factor  is commonly used to relate the ratio of the
postcracking shear stiffness in the concrete to the precracking
stiffness. [t essentially serves the same purpose as the residual
tension term proposed previously; that is, to ascribe some ten-
sile strength and stiffness to the unreinforced concrete even
through it is cracked and presumably incapable of resisting di-
agonal tension. While a large range of values has been report-
edly used for this factor, it also is commonly taken to be
approximately 0.05 to 0.10.

CORROBORATION WITH TEST BEAMS
The series of beams tested by Bresler and Scordelis, '® owing
to the high quality of the testing and the results, is often used
for benchmark purposes. The beams were designed and loaded
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Fig. 6—Comparison of computed and measured load-deflection
responses for Bresler-Scordelis beams.

such as to be critical in shear, being heavily reinforced for flex-
ure and containing light amounts of shear reinforcement. The
shear reinforcement ratios ranged from 0.0 to 0.2%. The beams
were simply supported and subjected to a concentrated mid-
span load, producing a shear span-depth ratio ranging from 3.3
to 5.8. Relevant details are provided in Table 1. The effective
depth of the bottom longitudinal reinforcement d was 457 mm
for all beams. The yield strength of the No. 9 bottom bars was
555 MPa, and of the No. 2 stirrups was 326 MPa.

The series of 12 beams was modeled for FE analysis. All re-
inforcement was modeled as smeared, with the longitudinal
bars smeared within a narrow band of elements coincident
with the effective depth of the reinforcement. For analysis
purposes, the cracking strength was estimated as 0.33\2, ;
and the modulus of elasticity was estimated as 5500V f /. A
typical FE mesh is shown in Fig. 5. Analyses were performed
using both the original MCFT formulations (MCFT-1), and
those incorporating the crack width limit and residual tension
limit criteria (MCFT-2). For the latter, a conservative value
of 0.10 f/ was used. ’

Shown in Fig. 6 are the computed load-displacement re-
sponse for the 12 beams. Most of the beams were found to fail
in web shear or flexural shear modes. When using the crack
width limit and the residual tension, the load-deflection re-
sponses are simulated reasonably well. The ratio of the ob-
served-to-predicted ultimate load for the beams has a mean of
1.07 and a coefficient of variation (COV) of 11.1% (refer toTa-
ble 2(a)). For the deflection at maximum load, the ratio of pre-
dicted to observed values has a mean of 0.90 and a COV of
14.9% (refer to Table 2(b)). These numbers are somewhat more
scattered than one normally would like or typically see when
applying smeared crack analysis methods to reinforced con-
crete structures. The intrinsic scatter associated with mecha-
nisms heavily dependent on concrete tensile strength,
however, cannot be overlooked.



Table 1—Details of Bresler-Scordelis beams

Bottom Top
Beam bX h, mm | Span, mm fi+MPa | reinforcement | reinforcement Stirrups Py % a/d
0OA-1 305 x 552 3660 22.6 4 No. 9 — — 0.00 3.32
0A-2 305 x 552 4570 23.7 5 No. 9 — — 0.00 4.14
OA-3 805 x 5652 6400 87.6 6 No. 9 —_ — 0.00 5.80
A-1 805 x 552 3660 24.1 4 No. 9 2 No.4 No. 2 at 210 0.10 3.32
A-2 305 x 552 4570 24.3 5 No. 9 2 No. 4 No. 2 at 210 0.10 4.14
A-3 305 x 552 6400 35.1 6 No. 9 2 No. 4 No. 2 at 210 0.10 5.80
B-1 229 x 552 3660 24.8 4 No. 9 2 No. 4 No. 2 at 190 0.15 3.32
B-2 229 x 552 4570 23.2 4 No. 9 2 No. 4 No. 2 at 190 0.15 4.14
B-3 229 x 552 6400 38.8 5No. 9 2 No. 4 No. 2 at 190 0.15 5.80
C-1 152 X 552 3660 29.6 2 No. 9 2 No. 4 No. 2 at 210 0.20 3.82
C-2 152 X 552 4570 23.8 4 No.9 2 No. 4 No. 2 at 210 0.20 4.14
C-3 152 X 552 6400 35.1 4 No. 9 2 No. 4 No. 2 at 210 0.20 5.80

Table 2(a)—Analysis results for Bresler-Scordelis
beams, ultimate load

Beam Py o KN Py theors KN P u-exp/ Py theor
OA-1 334 331 1.01
OA-2 356 292 1.22
OA-3 378 293 1.29
A-1 467 467 1.00
A-2 489 423 1.16
A-3 467 414 1.13
B-1 445 450 0.99
B-2 400 370 1.08
B-3 356 378 0.94
C-1 311 346 0.90
C-2 325 290 1.12
C-3 269 278 0.97
Mean: 1.07
COV: 11.1%

Also shown in Fig. 6 are the load-displacement responses
computed using the MCFT formulations without the crack
width limit and with no postcracking tensile stress in unrein-
forced elements. The correlations are inferior, particularly for
the beams containing no shear reinforcement where strengths
are grossly underestimated. Herein, failure initiates soon after
first cracking. Neglecting the crack width check and the resid-
ual tension, the ratio of the experimental to computed strength
for these beams deteriorates to a mean of 1.38 and a COV of
52.8%. The corresponding experimental to computed deflec-
tions at ultimate have a mean of 0.98 and a COV of 39.3%.
Thus, the two limits added to the formulation result in a signif-
icant improvement in accuracy in computing strength.

The strength of the beams containing no shear reinforcement
is extremely sensitive to the level of tension stress permitted in
the concrete; hence, by inference, are heavily dependent on
mechanisms such as aggregate interlock, tension softening and
tension stiffening. Shown in Fig. 7(a) are the responses for
Beam OA-1, as obtained using varying amounts of residual ten-
sion. The predicted strength is increased from 248 kN, when no
residual tension is assumed, to over 400 kN, when 0.2 f7/is as-
sumed. (Consider that £, calculated from 0.83V fc', is a conser-
vative lower bound on the actual cracking stress as determined
from prism tests or split cylinder tests.) Similar sensitivities
were observed with OA-2 and OA-3. The influence of the re-
sidual tension dissipates quickly as shear reinforcement is pro-
vided. Shown in Fig. 7(b) are the predicted responses for Beam
A-1, containing a nominal 0.1% shear reinforcement. The ob-

Table 2(b)—Analysis results for Bresler-Scordelis
beams, displacement at ultimate load

Beam Su-ap mm 8u-theor' mim Bu—ezp/ 8u—theo'r
OA-1 6.6 9.0 0.78
OA-2 11.7 18.5 0.87
OA-3 27.9 81.5 0.89
A-1 14.2 18.5 1.05
A-2 22.9 19.0 1.21
A-3 35.8 38.0 0.94
B-1 18.7 15.0 0.91
B-2 20.8 22.5 0.92
B-3 35.3 47.0 0.75
C-1 17.8 20.5 0.87
C-2 20.1 21.0 0.96
C-3 36.8 49.0 0.75
Mean: 0.90
COV: 14.9%

served influence on the strength and ductility is significantly
less. With regards to maximizing the accuracy of the correla-
tion between the observed and predicted strengths, the optimal
value for the residual tension is approximately 0.15f 5 however,
0.10 f{ was chosen because it provides a conservative (safe)
prediction in all cases examined herein.

The influence of the crack width limit is more difficult to ob-
serve in this particular series of tests. Generally, it works to
guard against overestimating the ductility of beams experienc-
ing high levels of web shear strains. Consider Beam A-3 as an
example. With the crack width limit in place, the maximum
load is achieved at a deflection of 40 mm and drops off fairly
abruptly thereafter. This relatively brittle behavior is consis-
tent with the observed response. Without the crack limit, the
maximum strength is developed at approximately 48 mm de-
flection, and the response remains fairly ductile without as rapid
a drop off in load.

A second series of specimens examined was that tested by
Collins and Stanik.'® These beams differed from the Bresler
and Scordelis beams in two important aspects: 1) the beam sec-
tions were much larger, some up to 1000 X 1000 mm in cross
section dimension; and 2) the shear span-to-depth ratios (a/d)
were lower at approximately 2.7. With the larger cross sec-
tions, size- and crack-related mechanisms figure more promi-
nently in the beam response; concrete postcracking tensile
stresses, aggregate interlock, and crack shear slip are influ-
enced by the proportionally larger crack widths and greater
crack spacings. With the lower shear-span ratios, the influence
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Fig. 7—Sensitivity to residual tension term: (a) Beam OA-1; and (b)
Beam A-1.

of direct strut action into the supports becomes more signifi-
cant, and the ability of cracks to undergo rotation is tested. Ten
of the larger beams were selected for analysis; some relevant
details are provided in Table 3. Note the exceptionally low val-
ues of shear reinforcement. Each of these beams experienced a
shear-related failure mode.

The Collins-Stanik beams were modeled in the same manner
as the Bresler-Scordelis beams. All reinforcement was modeled
as smeared. The crack width limit of 2.0 mm, and a residual ten-
sion of 0.10 f/, were typically used. The results obtained, as with
the unreinforced Bresler-Scordelis beams, demonstrated some
scatter but were reasonably accurate. Shown in Fig. 8, for exam-
ple, is the correlation obtained for the observed and calculated
load-deflection responses of Beam WM100D, one of the least
well-predicted beams. Stiffness and strength are overestimated,
but the brittle failure mode is adequately captured. Given in Ta-
ble 4 are the predicted and measured strengths of all 10 beams
examined. The ratio of the experimental to theoretical shear
strength has a mean of 0.93 and a COV of 18.9%, an acceptable
degree of accuracy. In these beams, a significant degree of slip
was measured along the crack surfaces. This slip may have re-
tarded the reorientation of crack directions and principal stress-
es, as assumed in the MCFT, preventing the formation of a
pronounced strut action into the supports. Note also that the
analyses systematically overestimated the strengths of beams
containing distributed longitudinal reinforcement (i.e,, beams
with the designation “D”). The crack control effectiveness of the
distributed reinforcement is not as pronounced as inherently as-
sumed in the analysis, derived from increased tension stiffening
due to the smeared reinforcement modeling.

SECTIONAL ANALYSES
Beam section analysis procedures have been used by various
researchers to model beams in shear. One such procedure was
described in Reference 20; it uses a layered section algorithm
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Fig. 8—Measured and calculated load-deflection response for Beam
WM100D.
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Fig. 9—Comparison of results of frame analyses for Bresler-Scordelis-
beams.

in which a beam section is discretized into a number of concrete
layers and reinforcement components. Each concrete layer is
analyzed for two-dimensional strain conditions within the
plane of the beam according to the equilibrium, compatibility,
and constitutive response requirements of the MCFT. Analyz-
ing two sections within close proximity provides a means of de-
termining the shear flow distribution through the depth of the
cross section. Alternatively, a more approximate (and much
quicker) analysis can be undertaken by assuming a constant
shear strain distribution through the depth of the section. The
constant shear strain assumption provides accurate approxi-
mations in most cases. Analyses of several sets of beams critical
in shear are reported in Reference 20, showing good correla-
tion to test results. Most of these beams, however, were well
reinforced in shear.

A nonlinear frame analysis algorithm was also developed, in-
corporating the sectional procedures previously described, to-
gether with the constant shear strain assumption. Analyses of
large-scale two-story frame specimens®'?? that sustained
shear-related failures showed good correlation. These frames,



Table 3—Details of Collins-Stanik beams

Beam bx h Span, mm Sy MPa A, Ibd, % Stirrups Py % a/d
WM100D | 1000 x 1000 2700 38 1.40 No. 3 at 375 0.038 . 2.70
WM100C | 1000 x 1000 2700 41 1.40 No. 8 at 375 0.038 2.70
BM1ooD 300 x 1000 2700 46 1.05 No. 3 at 600 0.079 2.70

BM100 300 x 1000 2700 46 0.76 No. 3 at 600 0.079 2.70
BN1ooD 300 x 1000 2700 37 1.05 —_ 0.000 2.70
BN100 300 x 1000 2700 37 0.76 — 0.000 2.70
UM1iooD 300 x 1000 2700 42 1.05 No. 3 at 600 0.079 2.70
UMi1o0 300 x 1000 2700 42 0.76 No. 3 at 600 0.079 2.70
UN100D 300 x 1000 2700 43 1.05 — 0.000 2.70
UN100 300 x 1000 2700 43 0.76 —_ 0.000 2.70

Table 4—Analysis results for Collins-Stanik beams

Beam Vu—up’ kN v, u-theor: kN v, u—ap/ Vu-theor
WM100D 834 1057 0.79
WMi1ooC 699 680 1.08
BM100D 462 . 514 0.90

BM 100 343 366 0.94
BN100D 258 382 0.68

BN100 192 188 1.02

UM100D 910 924 0.98

UM100 750 698 1.07

UN100D 637 756 0.84

UN100 598 552 1.07
Mean: 0.93
COV: 13.9%

however, also contained adequate amounts of shear reinforce-
ment (approximately 0.5%).

To gage the accuracy of the sectional procedures for shear-
critical beams containing little or no shear reinforcement, the
frame analysis algorithm was used in modeling the Bresler-
Scordelis beams. Frame models composed of 10 equal-length
beam segments were used to model the half-span of each beam.
All section details and material properties were as previously
described. The crack width limit and the residual tension pro-
vision are currently not installed in the frame analysis algo-
rithm; the need is not as great because all forces must be
resisted by sectional equilibrium without the benefit of strut
action to the supports. Further, the crack width check has no
relevance in the context of a sectional analysis procedure, and
the concrete tensile stress calculations are not limited by the
mesh configuration.

Shown in Fig. 9 are comparisons of the measured and com-
puted deflection responses for the 12 beams. Given in Table 5
is the correlation obtained for the beam shear strengths. The
strength, stiffness, and ductility of the beams are modeled well,
with an accuracy comparable to that of the nonlinear FE analy-
ses (NLFEA)(but requiring considerably less computational ef-
fort). The ratio of experimental-to-calculated shear strength
has a mean of 1.05 and a COV of only 9.3%. Failure mode, re-
inforcement strains, and other measure of sectional response
were also modeled well. Note that the beams containing no
shear reinforcement (OA-1, OA-2, OA-3) were modeled with
better accuracy than obtained with the NLFEA. In the sectional
analyses, tension stiffening is permitted in any concrete layer
within 7-1/2 bar diameters of a longitudinal bar, subject to lim-
its imposed by reinforcing bar yielding. Thus, the concrete ten-
sion is handled in a more rational manner than done so in the

Table 5—Frame analysis results for Bresler-
Scordelis beams

Beam 7, u-ezp kN Vu-theor» KN Vu-ezp/ V-theor
OA_1 167 151 1.11
OA-2 178 173 1.08
OA-3 189 222 0.85
A-1 234 213 1.10
A-2 245 222 1.10
A-3 284 232 1.01
B-1 221 203 1.09
B-2 200 179 1.12
B-3 175 195 0.90
C-1 156 137 1.13
C-2 162 138 1.18
C-3 135 134 1.01
Mean: 1.05
COV: 9.3%

FE formulation, where the residual tension is an arbitrary com-
pensation for incomplete modeling.

CONCLUSIONS

Smeared, rotating crack models can provide a viable and ac-
curate method for analysis for shear-critical concrete beams
containing little or no shear reinforcement. In particular, the
formulations of the modified compression field theory remain
valid provided that two minor limits are imposed on the origi-
nal constitutive relations, one relating to tensile stresses in the
concrete and the other to crack widths. More specifically:

1. Postcracking tensile stresses are required in unreinforced
or lightly reinforced concrete elements representing the web of
a shear-critical beam, for a viable internal load resisting mech-
anism to form. This tension, in reality, takes its origin from a
tension stiffening mechanism associated with the nearby longi-
tudinal reinforcement, and from aggregate and tension soften-
ing mechanisms. A conservative value for the lower limit on
this residual tension can be taken as 0.10 f7; and

2. Shear slip along the surfaces of wide cracks can resultina
divergence between the directions of principal stress and the
apparent directions of principal strain. An overestimation of
the reorientation of the stress trajectories and hence in the duc-
tility of the beam may result. To guard against this, the princi-
pal compressive stress is rapidly diminished in elements
containing cracks exceeding a limit of 2.0 mm in width.

With the addition of these two limits, the original MCFT for-
mulation provides a viable analysis model for NLFEA of shear-
critical beams while retaining the assumption of coaxiality of
principal stresses and strains. For beams containing shear rein-



forcement ratios exceeding the nominally low value of p, =
0.10%, correlation with experimental results is excellent. Fail-
ure mode, postcracking stiffness, ultimate strength, and ductil-
ity are accurately simulated. For beams containing no shear
reinforcement, the accuracy is reduced but still acceptable, giv-
ing the natural scatter associated with mechanisms lightly de-
pendent on concrete tensile strength.

Sectional analysis procedures, based on the MCFT, were
also shown to provide good results. A nonlinear frame analysis
procedure, incorporating a layered section algorithm and as-
suming a constant shear strain through the section, gives re-
sults comparable in accuracy to the FE analyses.

To improve the performance of smeared crack models to this
type of analyses, additional developmental work is required in
two respects:

1. An improved model is required for postcracking tension in
the unreinforced elements, better quantifying the influences of
tension stiffening effects from nearby reinforcement and from
aggregate interlock and tension softening. This will eliminate
the need for a constant value residual tension limit; and

2. Allowance should be made in the compatibility relations
for discrete shear slip along the crack surfaces. This will permit
the rotation of the principal stresses to lag behind the apparent
rotation of the principals strains. In turn, this will result in less
reorientation of the stress fields and less ductility in the com-
puted responses. Such a formulation will likely eliminate the
need for a crack width limit.

Work in these two areas is progressing.
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NOTATIONS
a = aggregate size, mm
a/d =  shear span-to-depth ratio
A; =  area of longitudinal reinforcement
b = width of beam section
d = effective depth to longitudinal reinforcement

. = compressive strength of concrete (cylinder)
peak compressive stress in cracked concrete
average stress in reinforcement component
7 = tensile strength of concrete

I

S
"

Jy = yield stress of reinforcement component
Jfa = principal tensile stress in concrete

fia =  principal compressive stress in concrete
h = depth of beam section

P, = ultimate load capacity of beam
shear stress on crack surface

v[l =

Umar=  Maximum shear stress that can be resisted on crack surface
¥V, = ultimate shear force on beam

w = crack width, mm

B = shear retention factor

Bs =  compressive softening factor

€, = principal tensile strain in concrete

€y =  principal compressive strain in concrete

€, = cylinder strain at peak compressive stress, 7.

€, = concrete strain at peak compressive stress, Jp
0,, = angle between reinforcement and normal to crack
p; = reinforcement ratio for i~th reinforcement component

p, =  shear reinforcement ratio
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