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Towards Cyclic Load Modeling of Reinforced Concrete

by F. J. Vecchio

Formulations are presented by which a secant stiffness-based finite ele-
ment algorithm can be modified to provide analysis capabilsty for arbi-
trary loading conditions, including reversed cyclic loads. Plastic offset
strains are defined for concrete and reinforcement, and these are incor-
porated into the analysts through the use of prestrain forces. The elastic
components of strain are then used to define effective secant stiffness
Sactors. To provide a record of plastic offsets, and of mazimum strain
experienced during previous loading, strain envelopes are defined
using a Mohr's circle construction. Provisional constitutive models are
presented for the concrete, although further work is required in this
area. An analysis of a shearwall shows the procedure to be stable and
compliant and to provide reasonably accurate simulations of behavior.
The results of a pilot series of panel tests are used to identify the aspects
of concrete modeling that are in need of further study and refinement.
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INTRODUCTION

In the analysis of reinforced concrete structures, a number of
diverse approaches have been used for material modeling.
These include plasticity-based procedures, fracture mechanics
procedures, and various nonlinear elastic models. In the latter
case, approaches range from discrete crack models to smeared
crack models, and from fixed crack models to rotating crack
models. Researchers working in each of these areas generally
have been successful in producing models that yield results of
acceptable accuracy for conditions of monotonic loading.
These efforts are well-documented in the literature.

Models that provide accurate simulations of behavior under
general loading conditions, and specifically under reversed cy-
clic loading, are somewhat less common. For such formulations,
the smeared crack approach tends to be the most favored. Oka-
mura and Maekawa® and Sittipunt and Wood,? among others,
have documented models assuming fixed cracks directions and
have demonstrated good correlation to experimental results. In
some fixed crack formulations, separate models have been used
to model the normal stress and shear stress hysteretic behaviors.
This is somewhat at odds both with the test observations and
with common elasticity approaches to constitutive modeling.
Stevens et al.* used a more comprehensive constitutive modeling
approach for concrete in a rotating smeared crack content. How-
ever, the tangent stiffness procedure used by Stevens resulted in
some numerical difficulties under cyclic load conditions.

An alternative approach previously described was also based
on the smeared rotating crack assumption.”® The procedure
was based on an iterative, secant stiffness formulation treating
concrete as an orthotropic material modeled according to the
constitutive relations of the modified compression field theory.”
The secant stiffness formulation resulted in a procedure
marked by excellent convergence and numerical stability char-
acteristics. Correlations to experimental data, for structures
subjected to monotonic loading conditions, were generally
very good. However, a criticism of the secant stiffness ap-
proach has been that it cannot be effectively used to model re-
sponse to general loading.

Presented herein are formulations whereby a secant stiff-
ness-based algorithm, employing the smeared rotating crack

assumption, can be adapted to represent hysteretic material re-
sponse under general and reserved cyclic loading. The compu-
tational advantages of the secant stiffness approach are
retained without any compromise to the material behavior
models that can be used. The need to separate shear and nor-
mal in-plane behavior is also eliminated.

RESEARCH SIGNIFICANCE

The need for accurate methods of analysis of reinforced con-
crete structures under general loading conditions has been
brought to the fore by structural failures sustained during the
recent Northridge and Kobe earthquakes. Many of the collapses
involved structural elements subjected to lateral shears, plac-
ing high strength and ductility demands on the cracked rein-
forced concrete. Current ability to model response under such
conditions is not well-advanced.

This paper presents an alternative method by which finite
element analysis procedures can be made to provide accurate
simulations of reinforced concrete subjected to reversed cyclic
loads. Empbhasis is placed on developing simple, numerically
stable formulations. The analysis of a shearwall structure, and
the results of a pilot test program, are also presented in a dis-
cussion of the importance of proper constitutive modeling.

PLASTIC OFFSET FORMULATION

Consider the stress and strain conditions in a concrete ele-
ment previously subjected to an arbitrary load history. Sup-
pose that at a particular point in time, in a principal strain
direction, the stress and total strain in the concrete are £, and
€., respectively, as shown in Fig. 1. The total strain can be con-
sidered to consist of an elastic strain component €2 and a plas-
tic strain component (or plastic offset) £?; thus

g, =€ +¢b (1)

4

The elastic strain can then be used to compute an effective se-
cant stiffness for the concrete

Et == (2)

However, the plastic strain must then be treated as a strain off-
set, similar to elastic offsets resulting from thermal expansion,
shrinkage, or other prestrain effects.

Formulations were previously described in References 6 and 8,
whereby elastic prestrains were rigorously incorporated into a
finite element algorithm based on a smeared, rotating crack
model and a secant stiffness approach. The plastic offsets can
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be accommodated in an analogous manner. To do so, the plastic
offsets in the principal directions are first resolved into compo-
nents relative to the reference axes, giving the vector [€2 7]

el
[ef1=| ¢, (9)

e,

From the prestrains, free joint displacements are determined as
functions of the element geometry. Then, given the free dis-
placements, the plastic prestrain nodal forces can be evaluated
using the effective element stiffness matrix due to the concrete
component (see Reference 6 for details).

The plastic offsets developed in each of the reinforcement
components are handled in a similar manner. For a reinforce-
ment component oriented in direction o, having a plastic off-
set ofsfl, the prestrain matrix is

el - (1+cos20,)/2

[el], = Ef (1 -cos2a,)/2 (4)

?

g, - sin2q,

The corresponding plastic prestrain nodal forces are then de-
termined accordingly. At the same time, the secant stitfness for
the reinforcement must be calculated as

E, =2 (5)

where f; s the current stress in the reinforcement and €¢ is the
elastic strain component (total strain net plastic strain).

The total nodal forces for the element, arising from plastic
offsets, can then be calculated as the sum of the concrete and re-
inforcement contributions. These are added to prestrain forces
arising from elastic prestrain effects and from nonlinear expan-
sion effects (see Reference 8). The solution then proceeds ac-
cording to the algorithm described in Reference 6.

Envelope of concrete plastic offsets

In the formulations being proposed, a critical requirement is
to define and retain the plastic strains occurring in the con-
crete. These strain offsets must be definable for any arbitrary
direction in the concrete continuum, even as principal strain
directions undergo rotation.

A Mohr’s circle construction provides a simple means of
tracking the plastic offsets [see Fig. 2(b)]. Given the concrete
plastic strains relative to the z, yaxes (¢£,, €f,, and ye/,), the
plastic strains in the directions corresponding to the principal
axes are as follows

el +e?, el _gl L,
g = o o 00826+%-‘”st8 (6)

Fig. 1—Elastic and plastic components of concrete strain defined.
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The strains €/, and €?, are then used in the concrete consti-
tutive models discussed later.

At any particular load step, further plastic straining may occur.
Let Ae’, and Ae?, represent increments in the plastic strains
in the principal directions; the increments may be positive or
negative, regardless of whether the total strains are tensile or
compressive. The parameters defining the envelope of plastic
strains can be updated as follows

’ AEP ASP

e/ =¢? +Tf‘(1 +cos20) + 2(2 (1—-cos20) (8)
, Ag? Ag?.

e =gl +—2—2(1 —cos29)+—2—2(1 +c0s20)  (9)
vh, =%l +Ael) - sin20 - Ae!, - sin26 (10)

Note that the principal direction 0 is determined on the basis of
the elastic strain components, not the total strains.

Envelopes of maximum concrete strains

In the hysteretic models for concrete stress that are typically
used, stresses are calculated from sets of rules linked to a back-
bone curve. The latter is usually a formulation describing the
monotonic response and requires the knowledge of the maxi-
mum concrete strains previously attained. In a continuum,
where the principal strain directions may be rotating, this pre-
sents a complication.

Mohr’s circle approach can again be used to approximately
describe the maximum strains corresponding to an arbitrary
direction. Consider first the maximum compressive strains in the
concrete. Suppose, for the current load step, the principal elastic
strains are £, £ oriented in a direction 0 relative to the reference
axis ., y [see Fig. 2(a)”. The maximum compressive strains in the
1-and 2-directions, attained during previous loading, are given by

€,,+€.,.., & -€ . mry -
Eml = mez =+ ["”2 . cos20 + YL;"” +5in20 (11)




Fig. 2—Defining envelopes of maximum concrete strains: (a) principal
azes in cracked element; (b) concrete plastic strains; (c) Mohr'’s circle for
mazimum compressive strains; and (d) Mohr’s circle for mazimum ten-
sile strain.

€.,0 = E""I_e“"‘y+E”“;E"”JCOSZG—Y—”“'- sin20 (12)

where €, €y AN Y,y are quantities defining maximum
compressive strains relative to the z, y-axes and are used to de-
fine Mohr's circle in Fig. ¢(c). The principal strains €, and
€, are then used in defining the backbone curve for the com-
pression response (discussed later).

If the current total compressive strains are greater than
those previously recorded, then the maximum strain envelope
must be updated. Thus, the strain increments A€, and Ag,,,
are defined as

0 ife; >e
cml
Aecml = { if (13)
€1 -€m e <€,
0 ife,>e,
Ae:mZ = { if (14')
€€ L& <€,

The parameters defining the compressive strain envelope are
then updated as follows

Ae Ag

€ime = Eons+ — (1 +0520) + —22(1 - cos20) (1%
Ag Ag

€y = Eppmyt T""Z(1-cosze)+T”"2(1 +c0s20) (16)

Yemzy = Yomzy ¥ A€,y - sin20 — A€, sin20  (17)

An envelope for the maximum tensile strains in the concrete is
developed in a similar manner [see Fig. 2(d)].

A total of six strain parameters (namely, €,,.. €. Yemzyr Etmrs
€/my> and Yy,,) must be retained in memory for each integ%ation
point to adequately define the maximum concrete strains. Note
that the Mohr’s circles for maximum strain [Fig. 2(c) and 2(d)]
do not represent a compatible strain condition present at any
one time, but are a convenient means of keeping an approxi-
mate account of maximum strain in any one given direction.

CONCRETE STRESS-STRAIN MODELS

At the outset, it should be noted that the models presented
herein are temporary and for demonstrative purposes only. For
simplicity, essentially linear unloading/reloading rules are
adopted. A comprehensive examination of currently available
models and the development of improved formulations based on
a extensive experimental investigation is currently underway.

First consider the compression response, illustrated in Fig. 3(a),
occurring in either of the principal strain directions (ie., €. = €,
or €, = €,; other parameters subscripted accordingly). The base
curve describing the monotonic response is based on a Hognestad
parabola or Popovics formulation, modified to account for com-
pression softening effects according to the modified compres-
sion fleld theory (MCFT). The monotonic response curve is
fully described in Reference 9.

On a reloading cycle where the concrete plastic strain in ef-
fect is €2, the concrete compressive stress is calculated as

?

0 ife, >e; ore, >0
fle) =1 (e,-¢€f )—f“”‘— ife! >e >¢e,  (18)
(€cn—el)
Joc(€) ife.<e,,

where €, is the maximum compression strain attained during
previous loading, in the direction in question; £, is the stress
corresponding to €,,; and f; (€, is the stress calculated from
the base curve for a strain €. (Note: €, and €, are total strains,
plastic strains included.) If the response falls on the envelope
curve (ie., € <€,,), then €, and £, are updated to €, and f7,,,
respectively.

At each load stage, the instantaneous plastic strain €2 is cal-
culated as follows

E{T 8[ 2 H
sc—ep[0.87 —|-0.29( < } if £r>l.5€P
, € € '
et = ? ? (19)

€
€, — 0.001305(—/’—)

if Se
500 if g.<15 5

where €, is the strain corresponding to the peak stress in the base
curve (see Reference 9). If the instantaneous plastic strain ex-
ceeds the plastic offset €2, then the latter is updated accordingly.

Unloading at any time produces stresses according to the re-
lationship

ﬁ(et) = Ecm(ec_ af ) (20)

where unloading modulus E,,, is defined as
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Fig. 3—Hpysteresis models for concrete: (a) compression response; and (b) tension response.
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Implicit in this model is the assumption that, in an excursion re- 20 /’ 7/
turning from the tensile strain domain, the compressive stresses 5 5k J.=30MPa e /7
remain zero until the cracks completely close (i.e.,, until £, < 0). Z 10 f{=5MPa // P
In fact, experimental evidence strongly suggests otherwise. The ~ €g=0.002 /’ 7 Second
re-contact strain will be somewhat greater than zero and will be 5 // / cycle
influenced by such factors as the crack shear slip. Modifications to 0 < /
the formulations can easily be implemented as they are developed. 5 M \/
Consider next the response in the tensile stress domain, illus- U1 L |
trated in Fig. 3(b). The base curve consists of two parts: that 10—y 2 1 0 ] 12 _I3

describing the precracked response and that representing the
postcracking tension-stiffened response. This base response is
fully described in Reference 7.

On a reloading cycle, when the active plastic strain is €/, the
concrete tensile stress is calculated as

_ e
Mﬁm if 8€<Ec<€lm
f&) =5(e,,-¢€) (22)
Su(€) if £,>¢,,

where €,,, is the maximum tensile strain attained during previ-
ous loading; f;,, is the stress corresponding to €,,; and f(€,) is
the stress calculated from the base curve for a strain €.

On the first tension cycle, the plastic offset €2 is held con-
stant at the value determined as response crosses from the
compression domain. The strain then used in the base curve
calculation is net of the plastic strain (ie., the base curve is
shifted such that its origin coincides with €2). In subsequent
cycles, the plastic strain offset is redefined as follows

. e
ef={”
0

Thus, no positive offsets are currently considered due to lack of
a suitable model at the moment. The implication is that the ten-
sion response will pass through the origin during both loading
and unloading.

if &£ <g,<0
(23)
if £,>0

When response falls on the envelope curve (i.e., €, > £,,), the
maximum tensile strain and corresponding stress are updated
to €/, and f},,, respectively [see Fig. 3(b)7. Stresses during un-
loading can be calculated from

€. (x10%)

Fig. 4+—Modeled response for element subjected to uniaxial strain
CLCUTSIONS.

f(eg,) = E, (e.—¢€l) (24)

where unloading modulus E,, is defined as

\ St .
E,, = —,—t—l— (25)
(elm - S‘f)

To better illustrate the loading and unloading response ob-
tained from the previously mentioned formulations, consider
the response shown in Fig. 4. It relates to a reinforced concrete
element subjected to a £2.5 X 107 strain excursion through the
first cycle, and a £3.0 X 1073 strain excursion through the sec-
ond cycle. The material properties are as shown,; the loading is
uniaxial, and it is assumed that the reinforcement does not
yield across the cracks (i.e., full tension stiffening is sustain-
able). It is worth noting that, during the second loading cycle
in compression, the reloading curve is not quite linear. This
occurs because the plastic offset is continually being redefined
at each load step (a step size of 0.1 X 10 was used). The same
effect leads to essentially zero tensile stresses during the second
and subsequent cycles when €, < 0. It is recognized that the
tension unloading and reloading curves passing through the
origin and the absence of compressive stresses in the tensile
strain domain are at odds with observed and accepted behavior.
It is not a result of any limitations in the formulation approach,
but due to lack of suitable models. Improved models can easily
be adopted as they are developed.
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Fig. 5—Hysteresis model for reinforcement (adapted from Seckin'®).

REINFORCEMENT STRESS-STRAIN MODELING

The monotonic stress-strain response is assumed to be tri-
linear. The initial stiffness of the reinforcement is E, giving
way to a flat-top yield plateau when the yield stress 1S
reached. At a strain of €, a strain-hardening response with a
stiffness of E, begins.

The reloading and hysteretic response of the reinforcement
is modeled after Seckin'® with some minor simplifications. The
Bauschinger effect is represented by a Ramberg-Osgood for-
mulation, as illustrated in Fig. 5. The first loading cycle is as
per the monotonic response. Unloading at any time is given by

f;(ez) = j.:',_] + Er(gz'_ 81—]) (26)

where E, is the unloading modulus (given below). The stresses
upon reloading are given by

, \ E,-E, N
f.\‘(e[) = b‘r(si_eu) " (81_80) (27)
N-1
N- (Em_ga)

where
E —E)E& —-¢
INY = ( m T)( m 0) (QS)
f;?I_ET(Em_E())
and
E, if (sm—£0)<e)‘

€,— €
E, = E‘;(I.OS—0.0Sﬂé—“J if €,<(e,—g,) <4g,(29)
Y

0.85E, if (g, -¢,)>4¢,

In a positive cycle, €, is the maximum positive strain attained
during previous cycles, f,, is the stress corresponding to €, as de-
termined from the backbone curve, and E,, is the tangent stiff-
ness at €, The parameter €, is the plastic offset strain
corresponding to the zero stress point for the present cycle; it is
redefined whenever the stress passes through zero. Note that the
reloading curve is tangent to the unloading curve at €, = €,, and
converges tangent to the backbone curve at €, = €,,. The unload-
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Fig. 6 —Details of PCA Wall B, taken from Oesterle et al.'?

ing stiffness E, is dependent on the magnitude of the strain ex-
cursion relative to the yield strain €.

In a negative cycle, the same formulations apply except that
€, is the maximum negative strain previously attained. The
stress f,, and stiffhess E,, are evaluated accordingly. For the
first reverse cycle (positive or negative), €, is taken as zero,
with f, = frand g, = 0.

The model requires five parameters to be retained in memory
for each reinforcement component at each integration point.
These are the maximum positive and negative strains attained
€, andg, ;the reinforcement stress and strain from the previ-

m
ous load step £, and €, ; and the zero point strain g,

ANALYSIS OF SHEARWALL

To obtain a preliminary indication of the suitability of the
proposed approach to cyclic response modeling of reinforced
concrete, an analysis of a large-scale shearwall structure was
undertaken. The structure chosen for investigation was Wall
B2.'" The series of wall tests that included this specimen is
widely regarded as a benchmark against which theoretical for-
mulations are calibrated. Wall B2 was a barbell-shaped wall,
measuring 1910 mm (6 ft 3 in.) in total width and 4670 mm
(15 ft) in height from the base (Fig. 6). The wall web was 102-
mm (4-in.) thick, and contained 0.63 percent horizontal rein-
forcement and 0.29 percent vertical reinforcement. The thick-
ened boundary elements were 305 mm (12 in.) square and
contained 3.67 percent vertical reinforcement. The wall was
built integral with a heavy base structure and stiff top slab. The
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Fig. 7—DF1nite element mesh used to model Shearwall B2.

top slab was subjected to lateral cyclic displacements progres-
sively increasing in magnitude, eventually leading to a concrete
crushing failure in the web. The shear-dominated behavior of the
wall represents a stringent test of the analysis procedures.

Wall B2 was modeled using the finite element mesh shown in
Fig. 7, comprising 252 linear displacement rectangular ele-
ments. The mesh is divided into three zones, representing the
web portion, the flanges, and the top slab, respectively. Rein-
forcement details and material properties for each zone are also
given in Fig. 7. The material properties, and other pertinent de-
tails, used in modeling the structure were as reported by Sit-
tipunt and Wood.” Note that the wall is assumed fully fixed at
the base, and no attempt is made to model bond slip. Loading
history was imposed by specifying lateral displacements at the
top center node of the top slab.

Aninitial analysis was done assuming no further deterioration in
the compression softening and tension stiffening responses, due to
cyclic loading, than is currently assumed by the MCFT for mono-
tonic loading. The imposed loading consisted of two cycles of top
lateral deflection at each amplitude level, beginning at £75-mm
(8-in.) amplitude and increasing by 25 mm until failure occurred.
The resulting predicted response is shown in Fig. 8(b), compared
to the experimentally observed response shown in Fig. 8(a). The
correlation is reasonably good in the following respects: 1) the
wall’s lateral resistance is approximately 625 kN; 2) there is only a
minor increase in lateral resistance with increasing displacement
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Fig. 8—Response of Shearwall B2: (a) experimentally measured

response; (b) predicted response assuming no decay in tension stiffening;
and (c) predicted response assuming full decay in tension stiffening.

amplitude beyond 75 mm, that is, the envelope of response in
nearly flat-top; 3) failure occurs during the +125-mm excursion,
although in the predicted response, it occurred at the start of
the second +125-mm cycle, whereas in the experiment failure
it occurred towards the peak of the first -125-mm cyclic; 4) failure
1s characterized by crushing of the concrete web near the base
region; 5) residual deflections upon unloading are significant and
cumulative, indicating a racheting effect occurring in the vertical
reinforcement in the flanges; and 6) the lateral stiffness of the
wall is progressively diminishing. The only notable discrepancy
between calculated and observed behavior is the degree of pinching
evident in the load-deflection hysteresis. This is likely related to the
shape of the base hysteretic models used for the compression and
tension responses, and to an overestimation in tension stiffening
effects. Other mechanisms, such as cyclic shear slip along the crack
surfaces due to deterioration in aggregate interlock, also contribute
to the pinched nature of the observed response.
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cylinder response; and (d) reinforcement coupon response.

Stevens et al.* observed from panel tests that the tension stift-
ening effect diminishes significantly as a result of cyclic loading.
To investigate the significance of this factor, the analysis of Wall
B2 was repeated, assuming no tension stiffening éffects (i.e., no
postcracking tensile stresses in the concrete). The resulting load-
deflection is shown in Fig. 8(c). Note that the hysteretic response
is somewhat more pinched than previously and is a closer match
to the experimental behavior. Other aspects of the correlation to
the experimental response remain strong, including the load ca-
pacity, failure mode, stiffhess response, and residual deflection.

It should be noted that the analysis algorithms were highly
stable and quick to converge at each load stage. The indication
from this analysis is that the proposed approach to modeling cy-
clic load eftects is a viable one.

PANEL TESTS

Analysis of structures such as the shearwall previously dis-
cussed are helpful in testing the ability of a calculation procedure
to model complex behaviors and interactions in structures.
However, the data most valuable in assessing the fundamental
constitutive behavior of reinforced concrete, under various con-
ditions including cyclic loading, is that obtained from simple
elements subjected to well-defined and well-controlled loads.

As previously noted, Stevens et al.* subjected three large-scale
panel elements to reversed cyclic load conditions. Among their
findings were that “reversed cyclic loading under biaxial condi-
tions results in a reduction of the peak compressive stress in ex-
cess of that observed for monotonic loading.” They also observed
reductions in the postcracking tensile stresses in the concrete as
a result of cyclic loading. Some constitutive relations were formu-
lated accordingly, although not in a form useful for this study.

To build on the work of Stevens, a more comprehensive series
of panel tests is planned. The objective of the work is to accumu-
late the necessary data to more accurately define hysteretic mod-
els for cracked reinforced concrete in compression and in tension,
under general loading conditions. The pilot series for this pro-
gram involved three 890 x 890 x 70-mm orthogonally-reinforced
panels; namely Panels PDV-1, PDV-2, and PDV-3."" The panels
were constructed of normal strength concrete and contained 1.82
percent reinforcement in one direction and 0.91 percent rein-
forcement in the perpendicular direction (z- and y-directions,

respectively). The reinforcement was fabricated from deformed
D5 bar, with a nominal diameter of 6.0 mm. Details of the speci-
men construction and material properties are provided in Fig. 9(a)
and (b). Typical stress-strain response curves for the concrete and
reinforcement are provided in Fig. 9(c) and (d), respectively.

The test panels were loaded under conditions of biaxial
compression and shear in the fixed proportion of fu:fnv =
-0.4:-0.4:1.0. Panel PDV-1 was subjected to monotonically in-
creasing load; Panel PDV-3 was subjected to cyclic loading
(unidirectional, with unloading to zero between cycles); and
Panel PDV-2 was subjected to reversed cyclic shear. Loads
were applied in equal increments of v = 0.5 MPa per load stage
up until approximately 70 percent of ultimate capacity, then at
increments of 0.25 MPa thereafter.

All three panels failed by shear failure of the concrete occur-
ring almost coincidently with yielding of the reinforcement in
the z-direction. The reinforcement in the j-direction typically
yielded well before failure. The state of the panels at failure are
shown in Fig. 10; Fig. 11 gives the measured shear stress-
strain response curves. In comparing the response of PDV-2
with that of control panel PDV-1, it is reasonable to surmise
that the effect of cyclic load was to cause significant further de-
terioration in the strength and stiftness of the concrete. Note
that in comparing ultimate loads, it is important to consider
that the strength of the concrete for PDV-3 was significantly
higher than in the other two panels.

The test panels were analyzed with the finite element proce-
dure discussed previously. In all cases, it was found that the
strength of the panels was governed by yielding of the rein-
forcement in both directions. The large strains accompanying
the yielding subsequently led to concrete shear failures. The
predicted load-deformation responses are shown in Fig. 12. In
the case of the monotonically loaded panel (PDV-1), the corre-
lation between experimental and calculated response is good in
all respects. In the cyclic and reversed-cyclic panels, some dis-
parities become evident. The experimental responses demon-
strate a behavior more influenced by concrete shear failure,
with substantially lower stiffness and significantly different re-
sidual strains upon unloading. The clear indication is that the
damage to the concrete is more extensive than that assumed in
the models. This becomes more clear when we examine the
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Fig. 10—Test panels at failure: (a) Panel PDV-1 subjected to
monotonic loading; (b) Panel PDV-2 subjected to reversed cyclic
loading; and (c) Panel PDV-3 subjected to cyclic loading.
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Fig. 11—Measured shear stress-strain response of test panels: (a)
Panel PDV-1; (b) Panel PDV-2; and (c) Panel PDV-3.

principal compressive and principal tensile stress-strain behav-
iors. Shown in Fig. 13 are the calculated and observed compres-
sion responses of Panel PDV-2 for the first v = 5.0 MPa cycle.
The inadequacy of the hysteretic models is clearly evident.

Thus, the nonlinear hysteric models for concrete subjected
to cyclic loads are critical to properly modeling the response.
Their influence may not be so apparent when examining mac-
roscopic behavior in structures such as shearwalls, where be-
havior is largely influenced by reinforcement yielding.
However, it can be significant in correctly predicting localized
damage, failure modes, and failure loads in shear or compres-
sion critical structures.
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Fig. 12—Calculated shear stress-strain response of test panels: (a)
Panel PDV-1; (b) Panel PDV-2; and (3) Panel PDV-3.

CONCLUSIONS

From the previous discussions, the following conclusions
can be drawn:

1. Employing strain offsets to model the plastic components
of strain in the concrete and reinforcement leads to a viable
means of using secant stiffness-based procedures for modeling
reversed cyclic load effects in reinforced concrete structures.

2. The resulting analysis procedure exhibits excellent con-
vergence and numerical stability characteristics.

8. A Mohr's circle approach is useful for constructing enve-
lopes defining the plastic strain offset, the maximum compressive
strain, and the maximum tensile strain sustained by the concrete,
in any particular direction, as a result of previous loading.
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Fig. 13—Comparison of measured and calculated concrete stresses
Sor Panel PDV-2 during first v = 5.0 MPa cycle: (a) principal
compresstve stresses; and (b) principal tenstle stresses.

4. A constitutive modeling approach based on a smeared ro-
tating crack assumption eliminates the need for separate hys-
teretic models for normal stress and shear stress response of
the concrete. Rather, the concrete can more conveniently be
modeled as a nonlinear orthotropic material in the conven-
tional sense, with relations expressing the principal compres-
sive and principal tensile stress behavior.

5. The load-deformation response of many reinforced con-
crete structures, such as the shearwall examined, is dominated
by the reinforcement behavior, even though ultimate load and
failure mode may be governed by the concrete. Proper modeling
of the Bauschinger effect in the reinforcement plays a large part
in accurately simulating the structure’s behavior.

6. Localized behavior, load capacity, and failure mode may, in
some cases, be strongly influenced by the highly nonlinear hys-
teretic response of the concrete. Simple linear unloading and re-
loading rules do not adequately represent response and prevent
the analysis procedure from capturing important subtleties in
behavior. In particular, the inability of cracks to completely close
before compression response begins is an important factor.

Experimental work is currently underway to define addi-
tional damage factors for concrete subjected to repeated cyclic
loads, both for further softening of the concrete in compression
and for the shake-out of stress in tension. In addition, the ex-
perimental work will lead to the formulation of more realistic
unloading-reloading models useful in a smeared rotating crack
context. These refined models can then be easily implemented
using the plastic offset method described.
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NOTATION
initial stiffness modulus of concrete
secant stiffness modulus of concrete
unloading modulus for concrete in compression
unloading modulus for reinforcement
initial stiffness modulus for reinforcement
secant stiffness modulus for reinforcement
strain hardening modulus for reinforcement
unloading modulus for concrete in tension
concrete stress calculated from base curve
normal stress in concrete
concrete cylinder compressive strength
concrete stress corresponding to maximum compressive strain
stress in reinforcement
concrete stress corresponding to maximum tensile strain
yield stress of reinforcement
orientation of reinforcement, clockwise from reference r-axis
first principal strain in concrete
second principal strain in concrete
total normal strain in concrete in given direction
elastic component of concrete strain in #direction
plastic component of concrete strain in ~direction
maximum compression strain in ~direction
strain at peak compressive stress in concrete cylinder
strain corresponding to peak stress in concrete base curve
elastic component of strain in reinforcement
plastic component of strain in reinforcement
strain in reinforcement at which strain hardening begins
maximum tensile strain in concrete in -direction
plastic shear strain in concrete relative to z,y-axes
shear strain associated with maximum compressive strains in
concrete
shear strain associated with maximum tensile strains in concrete
orientation of principal strain directions, relative to z-axis
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