NONLINEAR ANALYSIS OF
REINFORCED-CONCRETE SHELLS

By M. A. Polak® and F. J. Vecchio?

AssTRact: Nonlinear finite element procedures are presented for the analysis of
reinforced-concrete shell structures. Cracked concrete is treated as an orthotropic
material using a smeared rotating crack approach. The constitutive model adopted
for concrete compression response accounts for reductions in strength and stiffness
due to the presence of transverse cracks. The model used for concrete in tension
represents the tension stiffening effects that significantly influence postcracking
response. A heterosis-type degenerate isoparametric quadrilateral element is de-
veloped using a layered-element formulation, which rigorously considers out-of-
plane shear response. Selective integration is used to avoid shear-locking and zero-
energy problems. Good stability and convergence characteristics are provided by
the iterative, full-load secant stiffness solution procedure employed. Simple test
elements are used to confirm the analytical procedure’s ability to accurately model
behavior under conditions of membrane load, flexure, and out-of-plane shear. Plate
specimens and column-slab strip specimens are used to investigate the ability to
model complex structural behavior influenced by geometric and material nonlin-
carities.

INTRODUCTION

Considerable work has been reported in recent literature relating to the
development and application of finite element procedures for concrete shells.
Scordelis and Chan (1987) presented a formulation based on a layered model
applied to degenerate shell elements. Hinton and Owen (1984) also pro-
duced a formulation of the same type. Various constitutive models and
analysis procedures have also been presented by Hu and Schnobrich (1990),
Balakrishnan and Murray (1988), and Massicotte et. al. (1990). In most
formulations, however, effort has concentrated on the formulation of spe-
cialized elements and efficient solution algorithms. Insufficient attention has
been devoted to the implementation of realistic constitutive behavior models
that accurately model the response of cracked reinforced concrete. In par-
ticular, the out-of-plane shear response of concrete shells has been inade-
quately addressed.

The modified compression field theory (MCFT) was formulated as a
simple model representing the response of cracked reinforced-concrete
structures (Vecchio and Collins 1986). The theory was based on a smeared,
rotating crack idealization that considered equilibrium and compatibility
conditions in terms of average stresses and average strains. Constitutive
models were defined for cracked concrete in compression, reflecting
compression-softening effects due to transverse cracking, and for cracked
concrete in tension, reflecting tension-stiffening effects due to bond inter-
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actions with the reinforcement. The MCFT has been shown to accurately
model the response of concrete structures [e.g., Vecchio (1989)].

To improve current ability to model the response of reinforced-concrete
shells, work was undertaken to incorporate MCFT models into a stable and
efficient nonlinear finite element algorithm. The formulations developed,
and their corroboration with test results, are discussed in this paper.

ELEMENT FORMULATION

In selecting a specific type of element, a number of requirements were
taken into consideration. The element had to be based on a three-dimen-
sional elasticity formulation, enabling the modeling of both thin and thick
shells. The inclusion of transverse shear deformations in the formulation
was deemed essential. As well, the element had to be amenable to the
implementation of smeared rotating crack models for reinforced concrete,
based on the MCFT. Given these requirements, a heterosis-type degenerate
isoparametric element formulation was selected.

The quadratic heterosis element used is a nine-noded element with 42
degrees of freedom [see Fig. 1(a)]. The eight side nodes have five degrees
of freedom each; three translations and two rotations. The ninth, central
node has only the two rotational degrees of freedom. The element conse-
quently uses serendipity shape functions for translational degrees of free-
dom, and Lagrangian shape functions for rotational degrees of freedom.
The geometry is described with serendipity shape functions of a quadratic
order, thus permitting the element to have curved sides as well as variable
thickness. The heterosis element, when integrated with reduced or selective
integration, exhibits good performance for both thick and thin plates. Fur-
ther, when integrated with a selective integration rule, the element stiffness
matrix possesses the correct rank. The element formulation followed was
that described by Hinton and Owen (1984).

Inherent in the element’s formulation are the assumptions that:

1. Normals to the midsurface remain straight but not necessarily normal
to the midsurface after deformation.
2. Stresses normal to the midsurface are negligible.

These assumptions are illustrated in Fig. 1(b).

The assumption that the resultant stresses in the out-of-plane direction
(z-direction) are zero implies that there are only five independent strains.
With respect to the local xyz coordinate system, the strain condition at a
point is defined by the vector

€= [Ec By Yoy Yar Yoz e (1)

The assumption does not, however, preclude the development of normal
stresses in the concrete in the z-direction, provided out-of-plane reinforce-
ment is present to counterbalance these stresses.

To determine the element stiffness matrix for an isoparametric degenerate
shell element, numerical integration must be used. In the case of a quadratic
shell element, a 3 X 3 gaussian quadrature provides the most effective
approach. Elements integrated in this manner typically de not exhibit nu-
merical difficulties and comply with all the convergence criteria. In thin
shells, shear locking can become a problem, but behavior can be improved
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FIG. 1. Degenerate Shell Elements: (a) Element Type; (b) Assumptions Regarding
Deformation

considerably by using a reduced order of integration. With selective inte-
gration, the bending and membrane portion of the stiffness matrix is eval-
uated using the full integration rule (3 x 3), while reduced integration (2
x 2) is performed on the shear portion of the stiffness matrix. For the
heterosis element, this selective integration scheme results in no zero-energy
modes as well as eliminating the shear-locking problem.

Integration through the element thickness, taking proper account of ma-
terial nonlinearities, is facilitated by a layered-element formulation. The
shell element is divided into a series of layers, with each layer having one
integration point at the depth of its midsurface. Concrete layers and steel
reinforcement layers are defined separately (see Fig. 2). The steel layers
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FIG. 2. Layered Element: (a) Reference System and Force Resultants; (b) Con-
crete and Steel Components

are used to model the in-plane reinforcement only. The transverse rein-
forcement is specified as a property of a concrete layer.

Thus, the strain-displacement matrix B and the material stiffness matrix
D are evaluated at the midpoint of each layer, and for all integration points
in the plane of the layer. Stress resultants are obtained by integrating the
corresponding stress components over the thickness of the element. The
element stiffness matrix k and the internal force vector f are then evaluated
using standard procedures. Full details regarding the element formulation
are given by Polak (1992).

ANALYSIS PROCEDURES

The solution algorithm adopted for nonlinear analysis is a direct iteration
procedure using variable secant moduli. In each iterative step, the full load
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is applied to the structure and the total displacements are determined ac-
cording to

Kidi,, = R oo 2)

where K; = the global stiffness matrix obtained in the ith iteration; d,,, =
the vector of displacement calculated in the i + 1 iteration; and R = the
applied load. The solution algorithm accommodates nonlinear material and
nonlinear geometric behavior. Through each iteration, the strain-displace-
ment matrices B, the material stiffness matrices D, and the element stiffness
matrices k are reevaluated according to local strain and displacement con-
ditions. Full load is then reapplied, and the process is repeated until the
desired level of convergence is achieved.

The convergence criteria currently used is based on changes in defor-
mation. Displacements and rotations are examined separately, as follows:

[2 (d1+l - di)z

Z (dl+l)2

where d,, , and d, = the displacements from current and previous iterations,
respectively. Generally, tolerances between 0.5% and 1.0% were found to
produce satisfactory results. This accuracy is usually achieved after 10-20
iterations of the solution procedure.

Numerical stability can often be improved if the technique of underre-
laxation is used. In this technique, the displacements are updated in the
following manner:

diop =od, + (1 — o),y oo 4)

where « = a factor ranging between 0 and 1.

The secant stiffness approach described has the benefit of simplicity. For
material nonlinearities under proportional loading, and for mild to moderate
geometric nonlinearities, convergence is generally stable. Further, the lack
of a need to approach a load condition through intermediate load stages
often results in reduced costs and computation time.

With regard to the choice of a nonlinear geometric formulation, the use
of a secant stiffness algorithm dictates that it be based on total displacements.
Therefore, the total Lagrangian formulation was used to represent geometric
nonlinear behavior. It makes use of Green-Lagrange strain tensors and,
consequently, the second Piola-Kirchoff stress tensor. That is, the stress
and strain fields are referred to the original configuration of the system.
Thus, the displacement fields calculated represent the current displacements
in relation to the original shape of the structure. Through each iteration,
the strain-displacement matrices B are reevaluated, in turn affecting the
element and global stiffness matrices.

Material nonlinearities are accounted for in the definition of effective
secant moduli. From the given strains in the xyz-reference system, the
principal strains (g, €., ;) are found. The principal strains are then modified
to include the influence of Poisson’s ratio, giving the effective principal
strains (&, €2, €5,). For example

0.5
] x 100% < tolerance ....................... 3)

B (1 — v)e, + ve, + vey
€y = (& o)1 = 2wy o %)

From this strain condition, the concrete stresses in the principal directions
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(f.1, f.2» f-3) are determined using appropriate constitutive relations. The
effective secant moduli are then determined as

Eo= e ©)

S,f
If any of the principal strains due to stress exceeds the concrete cracking
strain (e,,), then the concrete is assumed to have cracked and the Poisson’s
ratio is taken as zero. In this case, &, = £y, €, = € and e; = ey Again,
the concrete stresses are determined using appropriate constitutive relations,
and the secant moduli are evaluated using (6). The secant shear moduli, in
the case of cracked concrete, are calculated as (Vecchio 1990)

<

o - Bk ,
T E e (7)

The concrete material stiffness matrix, with respect to the principal strain
axes, will thus have the form

E, 0 0 0 0

0 E, 0 0 0

0

0

0 0 E, 0

< 0o 0 0 G,

0O 0 0 0 G
0O 0 0 0 0 G

The concrete material stiffness matrix is then transformed into the local xyz
coordinate system; that is

) Y 0 1 Y U )

where T, = the appropriate strain transformation matrix.

In the case where out-of-plane reinforcement is part of a concrete layer,
its contribution to stiffness must be included. The strain in the direction of
the reinforcement, ¢, is used to determine the reinforcement stress, o, by
means of an appropriate constitutive relation for the out-of-plane steel. The
material stiffness matrix for the out-of-plane reinforcement is then formu-
lated as

Scoooo

el o g0 0 0|
SV
0 00000
D,=| 0 0000 0 | ..o (10)
0 00000
0 00000
Lo 0000 0]

where p, = the reinforcement ratio. The matrix D, is transformed to the
local xyz reference system and then added to the concrete component:

D!, = TID, T, oo (11)
and
DY =D+ D, (12)



where T,, = the transformation matrix for the transverse reinforcement.

The combined matrix D¥ must then be modified to enforce the zero
normal stress condition. For o, to equal zero, the following condition must
hold

(D;klax + D;(ZEy + D;{ny + D3*5'sz + D;‘G’Y}’Z)
_ PP (13)

€, =

Matrix D} is thus condensed to-a 5 X 5 matrix D, by removing row 3 and
column 3 and by the operation

D;§D3)
D3

Next, the influence of the in-plane reinforcement must be considered.
The in-plane strains (g,, €,, v,,) are used to calculate the strain in the
reinforcement, €,. From the calculated strain, for each reinforcement layer,
the stress f, is determined using appropriate constitutive relations. The ma-
terial stiffness matrix for a reinforcement component, in the direction of
the reinforcement is

D., =D} -

cif

Pl o 0 0 0 0
Esi
0 00000
D= 0 0000 0] .. (15)
0 00000
0 00000
L0 0000 0]

The D,,, matrix is then transformed to the xyz coordinate system and con-
densed to the 5 X 5 matrix Dy;.

Finally, all reinforcement component matrices are added to the concrete
stiffness matrix to form the total material stiffness matrix, D;

D =D+ 2 Dy oo (16)

MATERIAL MODELING

The material models used assume a smeared, rotating crack approach.
Cracked concrete is regarded as an orthotropic nonlinear elastic material.
Stresses and strains, in the concrete and reinforcement, are considered in
terms of average values representative of conditions gauged over several
crack spacings.

To model the constitutive behavior of concrete in compression, the re-
lation used is that suggested by Thorenfeldt et al. (1987), and later calibrated
by Collins and Porasz (1989). The concrete stresses in the principal directions
are evaluated as follows:

nes
fc3max
€0

fo = (17)

€3 "
(n - 1) + (E_U)
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where

n=08+ f;—7 (MPa) .. (18)
and

k=1, B3 B e e e (19)
k =067 + =2 (MPa), €3 €) «vovrieiii i (20)

The relationship, illustrated in Fig. 3(a), is valid for both normal and high
strength concrete. In the case of uncracked concrete,

Famae = oo 1)

In the case of cracked reinforced concrete, it is essential for realistic mod-
eling to include the compressive strength and stiffness deterioration arising
from transverse cracking. According to the MCFT (Vecchio and Collins
1986), the softening is effectively modeled by reducing the maximum achiev-
able stress, as follows:

f(-j,m,x = f(‘ = f: ............................. (22)

3!
0.8 — (()434 + ——)
€9

where &, = the average principal tensile strain. In the case where ¢, exceeds
the cracking strain, the €, value used in (22) is modified as

Y s (23)

When ¢, = compressive, f,, is also determined using (17)-(22) making the
appropriate substitutions.
For concrete in tension, prior to cracking, a simple linear relation is used:

for = EcBln 81 € e (24)
where
fer
D 25
o =g (25)
fr = 033VFL (MPa) < oooeoeemmem e (26)
and
E = He (27)
€0

After cracking, concrete tension-stiffening effects are significant and must
be included. This can be done effectively by employing a constitutive model
for the average tensile stresses developed in the reinforced concrete as a
result of bond mechanisms. The effective zone of concrete, in which these
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FIG. 3. Constitutive Response of Materials: (a) Concrete in Compression; (b) Con-
crete in Tension; (c) Steel Reinforcement

stresses are assumed to develop, is taken as that within 7.5 bar diameters
of any reinforcing bar. The constitutive relations used with success include
that proposed by Vecchio and Collins (1986), and that suggested by Izumo
et al. (1992) [shown in Fig. 3(b)] as follows:

fo = fors Eor B K 2B ottt (28)



0.4
. 28(7 -
fo="f, (———) , o (29)

A check must be made to ensure that the average concrete tensile stress
can be transmitted across the cracks. This is done by examining the reserve
of stress available in the reinforcement, as follows:

fu = 21 Dol for = FudCOSMOus oo (30)

where n = the number of reinforcement components, and 8,. = the angle
between the reinforcement and the normal to the crack.

The consitutive relation for average stresses in the in-plane reinforcement
is linear elastic until yielding, then perfectly plastic with strain hardening
[see Fig. 3(c)]. Thus

fom Even 0= 6 S By o 31)

f, = fi T (32)

fi=f+ Q;—(s e T = (33)
€, — h

For out-of-plane reinforcement, a simple bilinear relationship normally suf-
fices

Fom Bty = fr (34)

In an effort to corroborate the accuracy and generality of the analytical
procedure, a number of test specimens will be examined.

ELEMENTS SUBJECTED TO MEMBRANE STRESSES

Considered for investigation were specimens from the original series of
panel tests reported by Vecchio and Collins (1986). The test specimens were
890 x 890 x 70 mm, reinforced with two layers of welded wire mesh [see
Fig. 4(a)]. The reinforcement, typically heavy in one direction and light in
the other with a 50-mm spacing, was placed parallel to the panel sides.
Membrane loads were applied to shear keys, cast into the sides of the panels,
using a specially designed testing rig.

The 13 panels chosen for analysis provided a good representation of the
test series. Ten of the specimens were tested in pure shear, while three of
the specimens were subjected to combined shear and in-plane loads. Spec-
imen details and loading conditions are given in Table 1. The panels were
modeled for analysis using four equal-size quadrilateral elements. Due to
the uniform stress distribution through the thickness of the panels, a one-
layer discretization was used.

The finite element analysis provided a reasonably accurate simulation of
the test panel response. From the observed and predicted behaviors sum-
marized in Table 1, it is seen that the ultimate load and failure mode were
generally accurately represented. The load-deformation responses also showed
reasonably good agreement (e.g., see Fig. 4). In most specimens, including
the three shown in Fig. 4, failure was governed by a crushing of the concrete
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at principal stresses substantially less than the cylinder crushing stress. This
important aspect of behavior was successfully modeled. There was a ten-
dency, however, to underestimate the cracking stress and overestimate post-
cracking deformations. When larger shell elements were examined [SE-
series specimens, see Polak (1992)] the disparities were much less.
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ELEMENTS SUBJECTED TO BENDING

A test program was undertaken to investigate the behavior of shell ele-
ments subjected to biaxial bending and in-plane load conditions. Of partic-
ular interest was the influence of tension-stiffening mechanisms. The test
specimens were elements 1,524 x 1,524 X 316 mm in dimension, reinforced
with two layers of deformed bars in each of the two orthogonal directions.
The specimens were subjected to various combinations of biaxial bending
and in-plane loads using a facility that effectively produced constant and
uniform load conditions. Specimen details and loading conditions are given
in Table 2. Complete details and results are given by Polak and Vecchio
(1993).

For finite clement analysis, the specimens were modeled using a mesh of
nine equal-size elements. Ten layers per element were used for integration
through the depth. The in-plane reinforcement was modeled in a smeared
manner.

A comparison of the predicted yield and ultimate moments, with those
observed, is given in Table 2. Generally, yielding was predicted well whereas
the ultimate moments were underestimated somewhat. However, the load-
ing of the specimens was taken to very high levels of deformation (approx-
imately 15 times the yield deformation). At these levels, strain-hardening
effects in the reinforcement became significant. The load-deformation re-
sponses correlated well in terms of precracking stiffness, postcracking de-
formations, and postyielding ductility.

Specimen SM4 was particularly interesting because of the skew direction
of the reinforcement with respect to the applied bending and in-plane loads
[see Fig. 5(a)}. Significant nonlinear behavior was observed as reorientation
of cracks and stress fields occurred when the transverse reinforcement yielded.
Predicted and observed moment-curvature response are compared in Fig.
5(b); reinforcement strains are compared in Figs. 5(c) and 5(d). Again,
good correlation can be observed.

In these specimens, the tension-stiffening formulation embodicd in the
analysis procedure had a major influence on the computed load-deformation
response. Whereas with the membrane elements the formulation used re-
sulted in overestimated deformations, with the bending specimens it pro-
vided good average values for postcracking stiffness. Neglecting the tension-
stiffening effects resulted in overestimated deformations.

ELEMENTS SUBJECT TO OUT-OF-PLANE SHEAR

An important feature of the analytical procedure is its ability to consider
out-of-plane shear behavior. This behavior can be significant in thick-shell
structures. in shells subjected to concentrated transverse loads, and in plates
supported by columns. In such cases, transverse shear can be the governing
failure mechanism. Thus, the ability of the analytical procedure to accurately
model the response of specimens subjected to high transverse shear loads
was examined.

The test specimens considered were five shell clements tested by Adebar
(1989). The panels were of 1,524 x 1,524 mm in dimension, with a thickness
of 310 mm. In-plane reinforcement consisted of two orthogonal layers of
deformed bars, with the bars oriented at 45° to the specimen sides [similar
in construction to specimen SM4; see Fig. 5(a)]. Qut-of-plane reinforcement
was provided in the form of T-headed bars placed in a 120 x 120 mm grid.
The loads applied to the panels consisted of uniform. out-of-plane shear,
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equilibrating bending moments, and various combinations of in-plane forces.
Specimen details and loading conditions are summarized in Table 3.

The test results showed strong interactions between in-plane and out-of-
plane shear response. In-plane compressive forces acting in-line with the
bending plane had beneficial influences on the out-of-plane shear strength
and stiffness. Conversely, in-plane tensile forces had detrimental influences
on the out-of-plane shear behavior. All specimens, except SP8, which was
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loaded in pure in-plane shear, failed by a transverse shear failure of the
concrete prior to yielding of the in-plane reinforcement.

The test specimens were modeled: using a mesh of eight quadrilateral
elements, as shown in Fig. 6(a). Ten equal-depth layers per element were
used to model the shell thickness. The transverse reinforcement, modeled
in a smeared manner, was limited to the inner eight layers. The in-plane
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reinforcement was also modeled as smeared. Loads were applied as uni-
formly distributed stresses along the element edges.

Shown in Fig. 6(b) are the ultimate loads withstood by the test panels,
indicating the strong interactive effects between the in-plane and out-of-
plane shears. Also shown are the capacities predicted using the finite element
analysis program (APECS). Reasonably good correlation is indicated, given
the brittle nature of the specimen behavior.

The load-deformation responses of the panels were also modeled rea-
sonably well. Shown in Fig. 6(c) are the strains in the out-of-plane rein-
forcement near the center of specimen SP7. The experimental and theo-
retical results show good agreement. The predicted transverse shear stress
at which the stirrups yielded was around 1.0 MPa, consistent with the test
results. During testing, further increases in load caused little increase in the
stirrup strains until the final load of 1.6 MPa was reached. According to
the theoretical analysis, the specimen failed shortly after yielding of the
transverse reinforcement.

PLATES SUBJECTED TO COMBINED LOADS

To this point, the tests considered have involved simple specimens sub-
jected to uniform load conditions. These were used to confirm the ability
of the analytical procedure to represent specific types of behavior. Cor-
roboration of the analytical procedure will now focus attention on more
complex structures involving combined and variable internal force condi-
tions.

A series of tests was conducted at the University of Alberta in which
plates were subjected to combined in-plane and transverse loads (Aghayere
and MacGregor 1990). The test slabs were divided into various series, de-
pending on the slabs’ aspect ratio. The A-type slabs were square, with
outside dimensions of 1,830 x 1,830 mm; the B-type slabs were rectangular
with dimensions of 2,744 X 1,830 mm. All slabs had a thickness of ap-
proximately 65 mm. The specimens were reinforced with two layers of
deformed bars placed in orthogonal directions, with the reinforcement ratios
for the top and bottom layers equal. No out-of-plane shear reinforcement
was provided. The specimens were simply supported around the perimeter.
In-plane loads were applied along the outside layers of reinforcement while
transverse loads were applied as point loads at nine points for the A-type
slabs, and at 12 points for the B-type slabs. A summary of the specimen
properties, applied loads, and observed results, is given in Table 4.

It should be noted that the structural details and loading conditions, in
this test series, were such that geometric nonlinearities were significant in
determining specimen strength and stiffness. As such, this test series pro-
vided an additional check of the capabilities of the analysis procedure.

The finite element meshes used for the analyses were designed to accom-
modate both the boundary conditions and the load application points. For
the A-type plates, a 16-element mesh was used. The B-type plates were
modeled using a 20-element mesh. In both cases, 10-layer elements were
used.

Comparison of the observed and predicted cracking loads and peak loads
are given in Table 4. The load capacities of the plates were modeled well;
the cracking loads, however, were generally underestimated. It should be
noted, however, that the theoretical initial cracking was very localized. Also,
according to the analyses, specimen A3 failed abruptly when the corner
areas of the plate failed in shear. The predicted failure load for this plate
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TABLE 4. University of Alberta Plate Specimens

Concrete TOTAL TRANSVERSE LOAD
Properties Reinforcement in- | Experiment APECS

plane | Crack- | Peak | Crack- | Peak

Speci-| f. E pe P2 f, | load |ing load| load |ing load| load

men | (MPa) | (MPa) | (%) | (%) |(MPa)|(kN/m)l (kN) | (kN) | (kN) | (kN)
(1) (2) (3) (4) (5) 6) | () (8) 9) | (10) | (11)
Al | 323 [22970| 0.336 | 0390 | 504 | 962 | 72 | 153 | 34 | 141
A2 | 323 [23,010] 0350 | 0.400 | 504 | 765 | 72 | 126 | 61 | 134
A3 | 323 (23,150 0.344 | 0.400 | 504 | 0 s4 | 196 | 81 | 167
Bl | 40.3 |25580 | 0.500 | 059 | 504 | 874 | 60 | 142 | 40 | 160
B2 | 40.2 | 255550 0.500 | 0.590 | 504 | 634 | 35 | 183 | 30 | 220

“Per layer.
Note: x-direction is normal to the applied in-plane load.

was 15% lower than that observed. During testing, specimen A3 experienced
large cracks in the corners, and the test had to be terminated prematurely.

The load-deformation responses were also examined and found to cor-
relate well. Shown in Fig. 7, representative of the results obtained, are the
center-point deflections for specimens A2 and B2. The load-deformation
responses are seen to be highly nonlinear, with no distinct transition points
delineating postcracking or postyielding behavior. The theoretical re-
sponses, are seen to closely follow the observed behavior at all stages up
to the peak load. The analytical procedure is not capable of modeling overall
postultimate behavior, however, and thus could not follow the descending
branches.

SLAB STRIP SPECIMEN

The final test condition considered involved a slab-strip test specimen,
with stub columns, subjected to transverse and in-plane loads. The high
degree of compressive membrane action developed by the slab, and the
high shear stresses generated around the columns, served as a stringent test
for the analytical procedure.

Test specimen TV2 consisted of a 100-mm-thick, 1,500-mm-wide slab strip
built integral with two stub columns [see Fig. 8(a)]. The column stubs were
200-mm-square in cross section, spaced 3,075 mm apart on centers. A 400-
mm-square, 100-mm-thick drop panel was provided at each column for
punching shear resistance. Transverse edge beams were included at the ends
of the slab strips to facilitate the desired support conditions. Complete details
regarding the reinforcement details, specimen construction and material
properties are given by Vecchio and Tang (1990).

The support conditions imposed on the test specimen were such as to
induce significant levels of compressive membrane action. The bases of the
columns were connected by a servo-controlled actuator, in displacement
control mode, maintaining zero relative horizontal displacement. As well,
the transverse edge beams were restrained against vertical and horizontal
relative displacement, again using servo-controlled actuators in displace-
ment-controlled mode. Load was applied as a line load, using a stiff spreader
beam, at the centerline of the slab.

To effectively model the reinforcement and construction details, a rela-
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FIG. 7. Load-Deflection Resuits for University of Alberta Plates: (a) Specimen A2;
(b) Specimen B2

tively fine mesh was required. A 7 x 18 element grid was used to model
half the slab. Nodes corresponding to the locations of the columns were
restrained against vertical displacement. The columns themselves were not
modeled, and no attempt was made to consider the lateral restraint forces
developed by the columns. (These forces were relatively small compared to
the restraints developed at the slab ends, as observed in the test.) Thickened
elements were used to represent the drop panels.

The theoretical analysis was able to simulate the observed behavior rea-
sonably well. Shown in Fig. 8(b) are plots of the predicted and observed
load versus midspan deflections. At early load stages, the observed deflec-
tions were significantly higher than predicted. However, the test specimen
had developed some initial cracks due to handling and shrinkage, which
were likely responsible for the lower than expected stiffness. At intermediate
and high load stages, however, the predicted displacements agreed very well
with the observed response. The predicted ultimate capacity of the slab was
89 kN, virtually exact to the observed ultimate load of 89.5 kN. The failure
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mode was correctly predicted as one involving flexural hinging at the mid-
span and at sections crossing the inside faces of the columns.

The vertical reaction force at the end supports, shown in Fig. 8(c), was
also predicted well. This reaction force is somewhat dependent on the rel-
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ative stiffness changes throughout the structure, but is primarily derived
from first-order moment distribution. Satisfactory agreement is thus ex-
pected here. However, the horizontal reaction at the end supports is entirely
dependent on second-order nonlinear effects, and is much more difficult to
predict accurately. As shown in Fig. 8(d), the predictions from APECS
agreed well with the experimental response.

CONCLUSION

An effective nonlinear finite element model has been developed for the
analysis of reinforced-concrete shells. The model successfully incorporates
the assumptions of the modified compression field theory (MCFT) in its
representation of the behavior of cracked reinforced concrete. Concrete is
modeled as an orthotropic nonlinear elastic material using a smeared, ro-
tating crack approach.

A 42-degree-of-freedom degenerate isoparametric quadratic element was
formulated. The heterosis-type element uses a layered formulation for mod-
eling concrete and reinforcement components. A significant feature is the
ability to model out-of-plane shear reinforcement, and to rigorously consider
out-of-plane shear deformations. The selective integration scheme used ef-
fectively avoids shear-locking problems and zero-energy modes.

The iterative full-load secant stiffness solution procedure used results in
good convergence and numerical stability. The algorithm also allows for
nonlinear geometry effects using a total Lagrangian formulation. Material
nonlinearities are accounted for in the definition of variable secant moduli.

The constitutive relations of the MCFT were implemented without dif-
ficulty. Thus, the effects of concrete compression softening, concrete tension
stiffening, local conditions at crack locations, and response of reinforcement
were included in the formulation.

The analytical procedure was found to provide a practical combination
of generality and accuracy. The three-dimensional formulation used was
able to model the behavior of both thick and thin shells, subjected to a
wide range of loading conditions. In comparisons with test data, good cor-
relations were obtained in regards to load capacities, failure modes, load-
deformation responses, reinforcement stresses, and crack patterns.

In examining element behavior, the analytical procedure adequately sim-
ulated membrane stress behavior, flexural behavior, and out-of-plane shear
behavior. Elements governed by either the concrete crushing or by the in-
plane or transverse reinforcement yielding were modeled equally well. In
examining more complex test specimens, the analytical procedure was found
to also represent well overall structural response. In particular, the behavior
of structures highly dependent on geometric nonlinearities, membrane ac-
tions, and force redistributions was captured to a satisfactory degree.
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APPENDIX il. NOTATION

The following symbols are used in this paper:

B = strain-displacement matrix of element;

D, = concrete material stiffness matrix;

D, = reinforcement material stiffness matrix;

d = vector of global displacements of structure;

E. = Young’s modulus of concrete (initial tangent value);

o

m

"th !
I

secant moduli of concrete in principal directions;

E, = Young’s modulus of steel;
f = internal force matrix;
fos fo2r f.s = concrete stresses in principal directions;
", = concrete cracking stress;
f. = concrete cylinder compressive strength;
famax = compressive strength of cracked concrete;

= reinforcement stress;
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ultimate stress of reinforcement;

yield stress of reinforcement;

secant shear moduli of concrete with respect to principal
directions;

global stiffness matrix;

element stiffness matrix;

cracking moment of concrete section;

ultimate moment of shell element;

yield moment of shell element;

shell thickness;

shear forces applied to shell element;

cracking shear stress of panel element;

ultimate shear stress of panel element;

shear strains with respect to x, y, z reference axes;
concrete cracking strain;

strain at which hardening of steel begins;

strain corresponding to peak compressive stress;
reinforcement strain;

strain of reinforcement at ultimate stress;
strains with respect to x, y, z reference axes;
principal strains;

effective principal strains (due to stress);
Poisson’s ratio;

steel reinforcement ratio;

applied normal stress; and

applied shear stress.



