FINITE ELEMENT MODELING OF CONCRETE
EXPANSION AND CONFINEMENT

By F. J. Vecchio'

ABsTRACT: The lateral expansion of concrete subjected to compression (i.e., the
Poisson effect) is shown to be a significant factor influencing the behavior of rein-
forced concrete elements in tension-compression states in which the principal tensile
strain is relatively small. A method is presented by which concrete lateral expansion
can be incorporated into a nonlinear finite element algorithm. The formulations
presented presume the use of a secant-stiffness—based solution procedure, involving
the concept of material prestrains. Material behavior models are described for
nonlinear concrete expansion, strength reduction due to transverse cracking, strength
enhancement due to confinement, and pre- and postultimate stress-strain response.
The accuracy of the formulations are examined through finite element analyses of
a number of shear panels and shear walls previously tested. It is shown that the
inclusion of concrete lateral expansion can, in some cases, significantly alter the
computed response of an element or structure. Further, it is shown that the con-
sideration of expansion and confinement effects generally results in a significant
improvement in the accuracy of the analysis.

INTRODUCTION

The modified compression field theory (MCFT) was proposed several
years ago as a simple analytical model for predicting the load-deformation
response of reinforced concrete elements subjected to in-plane shear and
normal stresses (Vecchio and Collins 1986). The model considered equilib-
rium and compatibility conditions within an element in terms of average
stresses and average strains. Local stress conditions at crack locations were
also considered. New constitutive relations were proposed for cracked con-
crete, based on extensive test data, reflecting significant influences due to
compression softening and tension-stiffening mechanisms.

The formulations of the MCFT were subsequently incorporated into a
nonlinear finite element algorithm (Vecchio 1989). Accordingly, cracked
reinforced concrete was treated as an orthotropic material using a smeared,
rotating crack modeling approach. The solution procedure used was based
on a secant-stiffness formulation, giving good numerical stability and pro-
viding much freedom in the definition of material behavior models. The
finite element formulations were later further developed to permit the con-
sideration of prestrains in the component materials (Vecchio 1990).

Subsequent to the original formulation, experimental data have shown
the MCFT to somewhat overestimate the compression-softening effect in
elements experiencing relatively low tensile strains. In reexamining the orig-
inal test panels (Vecchio and Collins 1986), this is seen to be the case in
panels subjected to combined shear and biaxial compression, and in panels
loaded in pure shear containing a high percentage of transverse reinforce-
ment that did not yield. As well, an overestimation of the compression
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softening has been noted for some panels subsequently tested at the Uni-
versity of Toronto and elsewhere, particularly in panels in which the prin-
cipal tension and compression directions coincided with the orientation of
the reinforcement. This led to the realization that concrete expansion normal
to the compression (i.e., Poisson effect), hitherto not accounted for in the
MCFT, was a significant factor in elements experiencing relatively low ten-
sile straining.

In this paper, methods for the inclusion of concrete expansion in nonlinear
finite element analyses are discussed. The concept of material prestrains 1s
extended to accommodate modeling of the Poisson effect, and preliminary
material behavior models are described. The finite element analyses pre-
sented herein examine the relative significance of accounting for concrete
lateral expansion, and the resulting influence on the accuracy of compression
field type analyses.

FiNITE ELEMENT FORMULATION

A linear elastic orthotropic material, in the condition of plane stress, is
described in the principal stress directions by the stiffness matrix

1 E, v, E, 0
D = ‘l_‘—“‘ VZIEZ E2 0 .................. (1)
T Viba 0 0 (1 - Vlzvzl)Glz
where the shear modulus G, is given by

E\E,
El(l + Vlz) + Ez(l + Vzl)

(Weaver and Johnson 1984). To maintain symmetry in the stiffness matrix,
the following condition must be satisfied:

G, =

Ey, _ v

E, V2

Consider a concrete element subjected to biaxial stress conditions such
that f,, < f., [see Fig. 1(a)]. It has been common to assume, in orthotropic
formulations of cracked reinforced concrete, that the Poisson effects are
negligible (e.g., Vecchio 1989, 1990; Hu and Schnobrich 1990). Thus, with
v, = vy = 0, the stiffness matrix for concrete becomes

E, 0 0
D= |0 Eo O oo (4)
0o 0 G.

This assumption leads to relatively simple and reasonably accurate modeling
of concrete behavior in tension-compression states. However, in biaxial
compression states (i.e., when concrete is uncracked), or in cases where the
tensile strains in cracked concrete are relatively small, the lateral expansion
of concrete arising from Poisson effects can represent a significant portion
of the total strains.

The constitutive response of concrete in compression is characterized by
a progressively softening stress-strain curve [see Fig. 1(b)]. Further, due to
mechanisms related to internal microcracking, concrete exhibits a progres-
sively higher proportion of lateral expansion as compression is increased
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FIG. 1. Concrete Element Loaded in Biaxial Compression: (a) Definition of Ele-
ment Strains; (b) Variations in Modulus of Elasticity; (c) Variations in Poisson Ratio

[see Fig. 1(c)]. Thus, for the condition where f,, < f.,, it is generally
true that £, < E_, and v\, > v,,. This behavior is in direct conflict with
the requirements of (3). Thus, an elastic orthotropic formulation for con-
crete in accordance with the stiffness formulation in (1) cannot accurately
represent behavior in which expansion effects are significant. A means by
which this numerical difficulty can be circumvented lies in the use of a
modeling concept developed for material prestrains.

The finite element formulations developed previously permitted the in-
clusion of prestrain effects in the component materials of a reinforced con-
crete element. This enabled the consideration of prestressing in reinforce-
ment, shrinkage, or expansion of concrete, thermal expansion of either
concrete or reinforcement, or other types of strain offset effects. For con-
crete, a prestrain matrix €2 was defined relative to x, y system

B = | BLEA Yy | o (5)

accounting for all nonstress-related straining. The prestrains €2,, €2, and
Ye, Were then rigorously included in the finite element formulations (i.e.,
in determining stiffness factors and prestrain joint forces). The analysis
procedure is fully described in Vecchio (1990). It is adapted here to include
expansions related to Poisson effects.

Expansion prestrains are most conveniently determined with respect to
the principal axes; i.e.

8?1 = _vlz gjz .............................................. (6)
fcl

2 T TV E 7

€5 LT E ( )

Transforming the strains to the x, y reference system yields the following
relationships:
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, (1 + cos 26) + g0 (1 — cos 26)

E?x = €4 2 2 2 ....................... (8)

1 — cos 20 1 + cos 20 v

e = go 120820, (A cos20) 9)
2 2

Yo = €2 8IN20 — €% SIN20 ... (10)

where 0 defines the orientation of the principal axes [see Fig. 1(a)].

To optimize the numerical efficiency of the calculation procedure, as much
of the expansion effect as possible is included directly in the formulation of
the stiffness matrix. Only the portion that cannot be accounted for directly
is modeled in terms of prestrains. Thus, assume

€2 = 0 (11)

Now, consider the Poisson ratio v, to be composed of an elastic component,
v$,, and a residual component, v};. The elastic component will be such as
to satisfy the orthotropic requirements of (3); thus

2y1]

V‘;Z = VZI'Ecz .............................................. (12)
cl

and

v;kz = V2 — th’z ............................................. (13)

The component of expansion in the 1-direction, due to the stress f, that
must be modeled as a prestrain is

8?1 = _v;kz ]fCZ ............................................. (14)

The remaining expansion in the 1-direction, and the whole of the expansion
in the 2-direction, is accounted for in the symmetrical stiffness matrix

1 Ec_l VTgEcl 0
D(’. = ‘1_—'8—_ szEcz Ecz O I BRI (15)
~ ViV 0 0 (1 - VTzvzl)Gclz
where
) E - E
G.., = R e (16)

Ecl(l + V‘l’z) + Ecz(l + Vzl)

An iterative solution procedure is required for nonlinear finite element
analysis based on this approach. The algorithm described in Vecchio (1990)
remains valid if €2 and D. are modified as discussed. The procedure is also
valid in tension-compression cases, and for both cracked and uncracked
conditions.

MATERIAL MODELING

The formulations described were implemented in a two-dimensional non-
linear finite element program based on a secant-stiffness formulation (Vec-
chio 1989, 1990). The procedure was enhanced to nominally account for
triaxial stress effects, in membrane-type structures, arising from expansion
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in the out-of-plane direction restrained by reinforcement. Given the out-
of-plane reinforcement ratio p,, and recognizing that the compressive stresses
in the out-of-plane direction are likely to be relatively small, these stresses
were approximated by

P (17)
where
foo = Evees F foe oo (18)
If the out-of-plane reinforcement is not yielding

- be (e fa
€., = ECn n pz-Es < Vis E('z Vo ECI) ...................... (19)
otherwise
8(.: - _—% - vlz _é(;j—z - le g:l ............................ (20)

The modulus of elasticity of concrete in the out-of-plane direction, E,,, was
considered to be constant and equal to 2f/e,,.

To complete the implementation of expansion and confinement effects,
material models were required for strength degradation due to cracking, for
strength enhancement due to confinement (i.e., biaxial or triaxial compres-
sion), for pre- and postpeak stress-strain response, and for concrete lateral
expansion. The models tentatively used are as follows.

For cracked concrete subjected to a tension-compression stress state, the
constitutive modeling was done according to the modified compression field
theory (Vecchio and Collins 1986). The strength reduction factor B for
concrete in compression, shown in Fig. 2(a), is given by

B = ! PLO oo (21)

0.85 — 0.27 &t

€02

where €, and €., = the strains in the principal compressive and principal
tensile directions, respectively. Thus, the peak compressive stress attainable
is

Lo = B (22)
occurring at the peak strain
€ = B (23)
The stress-strain relationship, illustrated in Fig. 2(b), is
i 27
€2 €
fo= —1,12 (—-) - (——) s 0>e,>e, oo, (24)
L 8P EP ]
( Eo — E “]
fo=~f]1-(5—2) |, e,>e0> 26, oovvvvvii. ... (25)
2 2e, — €/ |

The relationship for concrete in tension, shown in Figure 2(c), is given as
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FIG. 2. Material Models for Concrete: (a) Compression Softening Parameter; (b)
Constitutive Response of Cracked Concrete in Compression; (c) Constitutive Re-
sponse of Cracked Concrete in Tension; (d) Strength Enhancement due to Biaxial
Compression; (e) Constitutive Response of Confined Concrete; (f) Poisson Ratio

ﬁ‘l = Ecn'scl, 0 < €1 < L (26)

fi
g, = e
f(l 1 + \/m £, ’ €c1 €cr

and is subject to reduction based on local conditions at crack locations.
For concrete in a biaxial compression state, strength enhancement was
modeled using a relationship approximating the Kupfer et al. (1969) model
[see Fig. 2(d)]. The strength enhancement factor for concrete in the 2-
direction, arising from the stress f., acting in the 1-direction, is given by

2
_fd) (—fcl)
K. =1+ 092 (——,— — 076 | === ... (28)
fe fe
The peak stress, f,, and strain at peak stress, ¢,, are
R O (29)
g, = K€y oo (30)

The strength enhancement factor for concrete in the 1-direction, due to the
stress f,,, i1s similarly determined by substituting f,, for f,, in (28).

Strength enhancement effects and increased ductility are particularly sig-
nificant in the case of triaxial compression. To determine strength increases
in the direction of the largest compressive stress (i.e., f.;), given the two
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normal compressive stresses f., and f., (assume f., < f,), the relationship
used was

K. = 4.1 <%) + [1 + 0.92 <%> - 0.76 <%)&:| .............. (31)

where

S (32)
and

fon = (o = fo1) o (33)

The first term in (31) represents the strength enhancement effect noted in
spiral columns by Richart et al. (1928). Again, the peak stress and peak
strain are determined by (29) and (30). To evaluate strength enhancements
in the other two directions, f,,, f.,, and f; are interchanged accordingly.
The constitutive response model for biaxially and triaxially compressed
concrete was based on a liberal modification of the modified Kent-Park
model (Scott et al. 1982)[see Fig. 2(e)]. The relationships used were

fao= -1, [2 (Z—d) - (Se—ﬂ) :l , 0>es3>e, ool (34)

fc3 = —f;p[l + Zm(SCB - Sp)] * O.pr, €3 < €p ................. (35)
where

_ 05 2fc‘l + fcn
Z, = 3+ 029" T Ta50 T B e (36)

145f, — 1000

Concrete in compression exhibits a lateral expansion characterized by
a progressively increasing Poisson ratio. At compressive stresses near
failure, the Poisson ratio can exceed 0.5 (i.e., volume increasing). The
behavior model tentatively used for the Poisson effect [see Fig. 2(f)], is
given by

Vi, = v, 0>¢,> 5’7 ..................................... (37
2¢e., ? £

vlz = vo 1 + 1.5 - - 1 # 0.5, £ > 862 ............... (38)
€, 2

where v, = the initial value of the Poisson ratio. The expansion in the 2-
direction due to the stress f, (i.e., v,) is similarly found from (38) by
substituting e, for €,. For concrete in tension, prior to cracking, the Poisson
ratio was considered constant at v,. After cracking, the Poisson ratio was
equated to zero for expansion normal to the tensile direction only (i.e., v,;

=0, v, F 0).
ANALYSIS OF SHEAR PANELS

To obtain an indication of the importance of expansion and confinement
effects, and their impact on the accuracy of compression field-type analyses,
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a number of the shear panels that had been originally tested (Vecchio and
Collins 1986) were reanalyzed. The panels chosen for investigation (see
Table 1) were among those that experienced a shear or crushing failure of
the concrete prior to yielding of the longitudinal reinforcement. These panels
were subdivided into two groups: (1) Panels loaded in pure shear, in which
p, equalled 1.79% and p, varied from 0 to 1.79%; and (2) panels loaded in
combined shear and biaxial normal stresses, in which p, and p, both equalled
1.79%. All of the test panels considered achieved, during testing, ultimate
and postultimate load conditions (i.e., no premature or edge failures).

For finite element analysis, a single-element model with smeared rein-
forcement was used. The panel parameters and material properties used in
the modeling are given in Table 1. (It should be noted that none of the
panels contained out-of-plane reinforcement.) Two sets of analyses were
performed using the nonlinear program TRIX, alternatively considering and
not considering expansion or confinement effects.

Comparisons between the two theoretical strengths determined for each
of the panels, against the experimentally observed strengths, are given in
Fig. 3. It can be seen that including the effects of expansion in the analyses
generally resulted in an increase in the predicted strength of the panels.
The influence was minimal in panels experiencing large tensile strains (i.e.,
in panels having p, << p,, experiencing yielding of the transverse reinforce-
ment). The influence became progressively more pronounced in panels sus-
taining smaller transverse tensile strains (i.e., in panels in which the trans-
verse reinforcement did not yield; PV22, PV23, PV25, PV27, PV28). The
increase in predicted strength was the result of the lateral expansion of
concrete normal to the principal compression (i.e., vifo/Ec) accounting
for a significant reduction in the net principal tensile strain, g,. This, in
turn, partially negated the compression softening effect predicted by (21)
and (22).

In comparing the experimental results with the predictions made with
and without expansion, a slight improvement in the accuracy of the analyses
was realized by accounting for expansion. For the 11 panels considered, the
mean of the ratio of experimental to theoretical strength changed from 1.03
to 0.98. More importantly, the coefficient of variation was improved from
8.8% to0 6.9%, reflecting significantly less scatter in the predictions (see Fig.
4). The indication is that concrete expansion is an essential part of the
behavior of concrete, and should be accounted for. However, it should be
realized that the compression softening model used was the one originally
deduced from the test data neglecting any Poisson effects. A revised model
currently being formulated, compensating for Poisson-related strains, will
no doubt yield improved accuracy.

The inclusion of concrete expansion also resulted in changes in the pre-
dicted load-deformation responses of the panels. The responses were gen-
erally unaffected at low and intermediate load levels, but exhibited increases
in strength and stiffness at near-ultimate conditions. The increases, however,
were relatively minor in elements experiencing large transverse tensile strains.

All of the panels considered herein were ones subjected to cracked ten-
sion-compression states. The influence of expansion and confinement is of
even greater significance in elements subjected to biaxial or triaxial compres-
sion states. This became evident in the results of analyses performed on
shear walls.
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FIG. 3. Comparison of Predicted to Observed Strength of Shear Panels: (a) Panels
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FIG. 4. Details of Shear Walls Tested by Lefas et al. (1990); (a) Type-1 Walls; (b)
Type-ll Walls '

ANALYSIS OF SHEAR WALLS

The shear walls chosen for analytical study were walls recently tested by
Lefas et al. (1990). The test program comprised 13 large-scale walls tested
under various conditions of axial load and monotonically increasing lateral
load. The wall geometries were of two types: The type-I walls were relatively
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squat, having a height-to-width ratio of 1.0 [see Fig. 4(a)]; the type-1I walls
were more slender, with a height-to-width ratio of 2.0 [see Fig. 4(b)]. In
both cases. the walls were of rectangular cross section. A thickened and
heavily reinforced base structure and a top spreader beam, cast integrally
with the walls, were used for load transfer.

Generally, both types of walls were reinforced in the vertical and hori-
zontal directions, in accordance with ACI 318 specifications. (In two of the
walls, SW17 and SW26, the horizontal reinforcement ratio was reduced to
test the validity of the shear design procedures.) The vertical reinforcement
typically consisted of two layers of 8-mm-diameter deformed bars at 60-mm
spacing in the type-I walls, and at 62-mm spacing in the type-II walls. The
horizontal reinforcement consisted of 6.25-mm-diameter bars at 80-mm spacing
in the type-I walls, and at 115-mm spacing in the type-II walls. In both wall
types, a 140-mm-wide concealed column was effectively formed at each edge
of the wall by the inclusion of closed ties fabricated from 4-mm-diameter
bar.

The walls were subjected to constant axial loads combined with horizontal
loads that were monotonically increased until failure. The loads were applied
through the top spreader beam. The constant axial loads applied are given
in Table 2.

The walls exhibited a strong, ductile behavior, developing strengths greater
than expected. The concrete at the base of the walls, and within the con-
cealed columns, was well confined. Lefas et al. (1990) reported the devel-
opment of triaxial compressive stress conditions in these zones, and attrib-
uted the high shear resistance of the walls to this state of stress.

Finite element modeling was undertaken for the two series of walls tested.
The walls were modeled for membrane stress analysis using low-powered
linear displacement rectangular elements. A 155-element mesh was used to
present the type-I walls, and a 140-element mesh was used for the type-II
walls (see Fig. 5). Loads acting on the wall structures were applied as nodal
forces along the top spreader beam. The nodes along the lower edge of the
base structure were assumed fixed.

TABLE 2. Wall Specimen Properties—Concrete

Axial load f! fi E.
Wall2 Type (kN) (MPa) (MPa) (MPa)

(1) (2) (3) (4) (5) (6)
SW11 I 0 44.5 2.20 33,350
SW12 1 230 45.6 2.23 33,750
SW13 1 355 34.5 1.94 29,350
SW14 I 0 35.8 1.97 29,900
SWI5 I 185 36.8 2.00 30,300
SW16 I 460 44.0 2.20 33,150
SW17 I 0 41.1 2.12 32,050
SW21 Il 0 36.4 2.00 30,150
SW22 1§ 182 43.0 2.16 32,800
SW23 I 343 40.6 2.10 31,850
SW24 I 0 41.1 2.12 32,050
SW25 I 325 38.3 2.04 30,950
SW26 I 0 25.6 1.67 25,300

ap, = 0.15 assumed for all walls.
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FIG. 5. Finite Element Modeling of Walls (See Tables 3 and 4 for Concrete and
Reinforcement Properties): (a) Type-l Walls; (b) Type-ll Walls

The concrete material properties, as used in the modeling, are reported
in Table 2. The concrete cylinder strength was taken as 85% of the cube
strength reported by Lefas et al. (1990). The tensile strength and modulus
of elasticity were estimated from the cylinder strength; f, = 0.33\/f! and
E, = 5,000V/f., respectively. The Poisson ratio was taken as 0.15. For the
reinforcement, the yield strengths of the 8-mm-, 6.25-mm-, and 4-mm-di-
ameter bars were 470 MPa, 520 MPa, and 420 MPa, respectively. The
modulus of elasticity used was 210,000 MPa. Being cold drawn, the rein-
forcement was assumed to have a strain hardening modulus of 10,000 MPa
beginning at a strain of 2.5 X 107? mm/mm.

The wall reinforcement was modeled in a smeared manner. Four zones
were distinguishable in each wall type in terms of reinforcement ratios and
wall thicknesses: wall interior zone, wall edge zone, spreader beam, and
base structure (see Fig. 5). The reinforcement ratios assigned to elements
in each of these zones are given in Table 3.

Nonlinear finite element analyses were conducted using program TRIX.
Expansion and confinement effects were taken into account using the for-
mulations and material behavior models previously described. (It should be
noted that all modeling decisions were made and data input files created,
for all the walls, before any analysis was made. Further, each wall was
analyzed once only. Thus, the results obtained were essentially true pre-
dictions.)

For all walls, the predicted sequence of failure involved flexural-shear
cracking, followed by yielding of the vertical reinforcement on the tension
side, ending with crushing of the concrete near the base on the compression
side. Elements near the compression base developed significant levels of
triaxial compression. In no wall did the stresses in the horizontal reinforce-
ment approach yield. All these aspects of behavior agreed well with the
experimentally observed response.

The ultimate loads obtained from the theoretical analyses are compared
with the experimental values in Table 4. It can be seen that the strengths
of both the type-I and type-11 walls were predicted very accurately. For the
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TABLE 3. Wall Specimen Properties— Reinforcement

t (o fi ny fov P fi:
Zone (mm) (%) (MPa) (%) (MPa) (%) (MPa)

(1) 2) (3) (4) (5) (6) (7) (8)
(a) Type-I walls

1 70 1.095* 520 2.138 470 — —

2 70 1 1.09540.448 | 520/420 3.076 470 1.200 420

3 200 0.818 520 | 0.837/0.209 | 470/4201 0.279 420

4 200 1.675 520 1 0.837/0.209 | 470/4201 0.140 420
(b) Type-II walls

1 65 0.820° 520 2.090 470 — —

2 65 10.820°/0.336 | 520/420 3.312 470 0.900 420

3 200 0.818 520 | 0.810/0.203 | 470/420 [ 0.270 420

4 200 1.022 520 | 0.810/0.203 | 470/420 | 0.135 420

30).365 in wall SW17.
*0.410 in wall SW26.

TABLE 4. Wall Specimen Results

Without Expansion Modeling| With Expansion Modeling
uexp wthoor Experimental/ Fooor Experimental/
Wall (kN) (MPa) Theoretical (MPa) Theoretical
(1) (2) 3) (4) (5) (6)

SW11 260 252 1.032 285 0.912
SW12 340 292 1.164 345 0.986
SW13 330 260 1.269 305 1.082
Swi4 265 226 1.173 280 0.946
SW15 320 252 1.270 320 1.000
SW16 355 310 1.145 360 0.986
SW17 247 232 1.065 260 0.950
Sw21 127 116 1.095 124 1.025
Sw22 150 140 1.071 152 0.987
Sw23 180 148 1.216 162 1.111
Sw24 120 120 1.000 126 0.952
SW25 150 144 1.042 150 1.000
SW26 123 99 1.242 112 1.098
Mean — — 1.137 — 1.003
cov — — 0.082 — 0.061

13 walls analyzed, the ratio of the experimental to predicted strength had
a mean of 1.00 and a coefficient of variation of 6.1%.

The predicted load-deformation responses also compared well with the
experimental results. Shown in Fig. 6, as representative examples, are the
theoretical and experimental horizontal deflections at the top of walls SW16
and SW25. Generally, the deflections were predicted reasonably well at all
stages of loading. There was a tendency, however, to underestimate de-
flections in the type-I walls. As well, at ultimate loads, the experimental
results demonstrated a more ductile response, whereas the force-controlled
analyses reflected a more brittle crushing failure.
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FIG. 6. Comparison of Predicted and Observed Load-Deformation Response of
Shear Walls: (a) Wall SW16; (b) Wall SW25

Other aspects of behavior were also examined, including crack patterns,
stresses 1n the reinforcement, surface strains, and failure modes. Again,
good correlation was found between the experimental and analytical results.

The finite element analyses provided useful information regarding the
distribution of stresses within the walls. Consider, for example, the principal
compressive stress and normal shear stress distributions that developed across
the base of wall SW16 at ultimate load (F,, = 360 kN). The principal
compressive stress f.; rose from essentially zero on the tension face to a
value of —68.3 MPa (1.55f,) on the compression face. In the outermost
element, the two normal stresses that developed as a result of expansion
and confinement were f,, = f., = —3.67 MPaand f,, = —16.1 MPa. The
reinforcement stress in the out-of-plane direction was approaching yield,
and the principal compressive strain, at —4.08 x 10-3, was well into the
postpeak regime. The shear stress distribution was found to be very much
skewed toward the compression face. Thus, while failure of the wall ulti-
mately resulted from crushing of the concrete on the compression face, it
did so only after the elements on the tension side had essentially failed in
tension-compression mode, relinquishing much of their shear-carrying ca-
pability.

The analyses also provided a measure of the importance of considering
biaxial and triaxial stress effects. Ignoring the influence of nonlinear ex-
pansion and out-of-plane confinement, and thus not accounting for triaxial
compression, resulted in a substantial reduction in predicted strength. The
ratio of the experimental to predicted strength increased to a mean of 1.14,
with a coefficient of variation of 8.2% (see Table 4). Further, the ductility
at ultimate load was significantly reduced. However, there was virtually no
influence on the predicted load-deformation response at low and interme-
diate load levels.

CONCLUSIONS

Experimental evidence has shown that, in particular cases, concrete lat-
eral expansion (i.e., the Poisson effect) represents a significant influencing
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factor in the behavior of reinforced concrete elements. Specifically, this has
been found to be true for elements in tension-compression states in which
the principal tensile strain is relatively small, as well as in elements subjected
to biaxial or triaxial compression states. The resulting confinement effect
provided by reinforcement opposing the expansion can result in significant
strength enhancement and improved ductility in postultimate stress regimes.

A simple procedure was developed for incorporating concrete lateral
expansion into nonlinear-elastic finite element analysis algorithms. In this
procedure, material prestrains were defined and rigorously accounted for
in the definition of a material stiffness matrix and element nodal forces.
The procedure, used in conjunction with a secant-stiffness—based nonlinear
analysis algorithm, was found to be numerically stable and able to accom-
modate a wide range of concrete expansion models.

To realistically represent concrete expansion and confinement effects,
material models were presented describing the degree of lateral expansion,
the strength degradation due to transverse cracking, the strength enhance-
ment due to confinement, and the pre- and postultimate stress-strain re-
sponses. The strength degradation and constitutive modeling for concrete
in tension-compression states were based on formulations previously pre-
sented as the modified compression field theory (MCFT). The MCFT models
have been extensively corroborated with experimental data and have been
shown to accurately represent behavior. The models presented for concrete
expansion and for concrete constitutive response in biaxial or triaxial
compression states were preliminary, used here only for the purposes of
initiatory investigation; they should not be taken as proposed or recom-
mended models.

In the examination of shear panels previously tested, the inclusion of
concrete expansion in the analyses led to some improvement in the accuracy
of MCFT-based models. For elements in tension-compression states in which
tensile strains were relatively small, the degree of improvement in accuracy
was significant. In elements experiencing high tensile strains, inclusion of
concrete expansion had minimal influence on the computed response.

In the examination of shear walls tested under monotonically increasing
lateral load, expansion modeling was again found to be a critical factor.
When expansion was accounted for, the nonlinear finite element analyses
were found to very accurately model the strength and load-deformation
response of the walls. Ignoring expansion effects resulted in significantly
lower strengths (by an average of 14%), and reduced ductility near ultimate
load.

Work is currently under way toward the formulation of more accurate,
experimentally based concrete expansion models and corresponding con-
stitutive models.

APPENDIX . REFERENCES

Hu, H. T., and Schnobrich, W. C. (1990). “‘Nonlinear analysis of cracked reinforced
concrete.” Am. Concr. Inst. Struct. J., 87(2), 199-207.

Kupfer, H., Hilsdorf, H. K., and Riisch, H. (1969). “Behavior of concrete under
biaxial stress.” J. Am. Concr. Inst., 66(8), 656—666.

Lefas, I. D., Kotsovos, M. D., and Ambraseys, N. N. (1990). “Behavior of reinforced
concrete structural walls: Strength, deformation characteristics, and failure mech-
anism.” Am. Concr. Inst. Struct. J., 87(1), 23-31.

Richart, F. E., Brandzaeg, A., and Brown, R. L. (1928). *“A study of the failure of
concrete under combined compressive stresses.” Bull. No. 185, Univ. of Illinois
Engineering Experimental Station, Urbana, Ill.

2404



Scott, B. D., Park, R., and Priestley, M. J. N. (1982). “‘Stress-strain behavior of
concrete confined by overlapping hoops at low and high strain rates.” J. Am.
Concr. Inst., 79(1), 13-27.

Vecchio, F. J., and Collins, M. P. (1986). “The modified compression field theory
for reinforced concrete elements subjected to shear.” J. Am. Concr. Inst. , 83(2),
219-231.

Vecchio, F. J. (1989). “Nonlinear finite element analysis of reinforced concrete
membranes.” Am. Concr. Inst. Struct. J., 86(1), 26-35.

Vecchio, F. J. (1990). “Reinforced concrete membrane element formulations.” J.
Struct. Engrg., ASCE, 116(3), 730-750.

Weaver, W., Jr., and Johnston, P. R. (1984). Finite elements for structural analysis.
Prentice-Hall, Englewood Cliffs, N.J.

APPENDIX Il. NOTATION
The following symbols are used in this paper:

D. = concrete material stiffness matrix;

E, = modulus of elasticity of orthotropic material in 1-direction;
E, = modulus of elasticity of orthotropic material in 2-direction;
E., = modulus of elasticity of concrete (initial tangent stiffness);

E., = secant modulus of elasticity of concrete in principal tensile stress
direction;

E., = secant modulus of elasticity of concrete in principal compressive
stress direction;

E; = modulus of elasticity of reinforcing steel;

. cylinder compressive strength of concrete;

, tensile strength of concrete;

fa = largest principal tensile stress in concrete;

fe = intermediate principal stress in concrete;

fes = largest principal compressive stress in concrete;

fe» = lateral confining stress on concrete;

fen = difference between normal lateral stresses on concrete;
fe. = stress in concrete in out-of-plane direction;

f» = peak compressive strength of concrete;

fsz = stress in out-of-plane reinforcement;

fyx = yield stress of horizontal reinforcement;

f,y = Yyield stress of vertical reinforcement;

fy= = yield stress of out-of-plane reinforcement;

F, = ultimate lateral load capacity of shear wall;
Gy, = shear modulus of orthotropic material relative to principal axes;

G, secant shear modulus of concrete relative to principal axes;

K. = strength enhancement factor for confined concrete;
v, = ultimate shear stress of panel;
Z,, = slope of stress-strain curve for confined concrete in postultimate

regime;
B = strength reduction factor for transversely cracked concrete;

Yexy, = shear prestrain in concrete relative to x-, y-axes;
€2 = concrete prestrain matrix;
€4 = largest principal strain in concrete;
€., = intermediate principal strain in concrete;
€3 = largest principal compressive strain in concrete;
€2y = prestrain in concrete in principal tensile direction:
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prestrain in concrete in principal compressive direction;

strain in concrete in out-of-plane direction;

prestrain in concrete in horizontal direction;

prestrain in concrete in vertical direction;

strain in concrete cylinder at stress f/;

strain in concrete at peak stress f,;

angle of inclination of principal stresses in concrete;

initial value of Poisson ratio;

Poisson ratio describing strain in 1-direction due to compressive
stress in 2-direction;

elastic component of v;5;

residual component of v,,;

Poisson ratio describing strain in 2-direction due to compressive
stress in 1-direction;

steel reinforcement ratio in horizontal direction;

steel reinforcement ratio in vertical direction; and

steel reinforcement ratio in out-of-plane direction.



